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Today’s lecture

● Repetition and refinement of some basic concepts:
– What is an image?
– Convolution
– The Fourier Domain
– Sampling
– Aliasing
– Interpolation
– Point operations
– Thresholding
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Image definition
● Continuous image

– Finite in size
– Each point has a scalar value

● Multi-valued image
– Each point has multiple values

● Discrete image
– Sampled version of continuous image
– Sample values still real-valued!

● Digital image
– Sample values also discretized
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Samples and pixels
● Sample: the value f(x) of a function at a point x

– 1-D signals: people talk of “samples”
– 2-D images: people talk of “pixels”
– 3-D images: people talk of “voxels”
– These are all the same thing!   (suggested: imels)

● Pixels represented as little
rectangles on the screen
– This is the Voronoi

tesselation of the samples
in a rectangular grid
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Alternative sampling grids
● Do we always need to use rectangular grids?
● Alternative in 2-D: hexagonal grid

– Advantages:
● All direct neighbours at same distance
● All direct neighbours share an edge (no 

"connectivity paradox")
● 3 directions of equal distance, vs 2 in square grid
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Alternative sampling grids
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Alternative sampling grids
● Alternatives in 3-D (generalizations of hexagonal grid):

– Face centered cubic
● Voronoi tessellation is rhombic dodecahedron
● Tightest possible packing density (Kepler)

– Body centered cubic
● Voronoi tessellation is truncated octahedrons
● Like hexagonal grid, all direct neighbors share faces
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What is resolution?

distinguishable

minimum
distance

How is this related to sampling density/pixel size?
And how is this related to number of pixels?
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Image Acquisition: Sampling

Correctly sampled UndersampledOversampled

Wastes computer memory
Looses information
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Convolution
● Convolution mimics Linear Time Invariant (LTI) 

systems:
– Sampling
– Reconstruction
– Microscope lenses
– CCD sensor
– Electric circuits
– Radio
– …
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Convolution

Sum of infinite number 
of kernels, weighted 
with input function

For each output point, 
integral of multiplication of 
mirrored kernel with input 
function

g  x  = ∫
−∞

∞

f  h x− d 
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Convolution

g [n ] =∑
k=0

N−1

f [k ] h[n−k ]

g  x  = ∫
−∞

∞

f  h x− d

● For discrete image and discrete kernel: finite sum
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Convolution properties
● Linear:

– Scaling invariant:

– Distributive:

● Time Invariant:

● Commutative:

● Associative: A⊗B⊗C=A⊗B⊗C

shift A⊗B=shift A⊗B

A⊗B=B⊗A

A⊗BC=A⊗BA⊗C

a A⊗B=aA⊗B
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The sampling property

Discrete
image

Discrete
image

Continuous
image

Continuous
image

Continuous
LTI

Discrete
LTI

reconstruction

sampling

(if band-limited!)
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Convolution at the image edge



Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Convolution at the image edge

Mean padding Zero order hold
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Convolution at the image edge

Periodic boundary condition Symmetric boundary condition
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Fourier transform in 1D

F  = ∫
−∞

∞

f x  e−i x d x

f  x  = 1
2 ∫

−∞

∞

F  ei x d

F [k ] = ∑
n=0

N−1

f [n] e
−i 2

N
kn

f [n] = 1
N ∑

k=0

N−1

F [k ] e
i 2

N
kn

=2 f=2
T



Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Fourier (frequency) domain

Notice the
symmetry!
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Fourier transform in 2D, 3D, etc.
● Simplest thing there is!  —  the FT is separable:

– Perform transform along x-axis,
– Perform transform along y-axis of result,
– Perform transform along z-axis of result, (etc.)

● All the same properties apply as for 1-D Fourier 
Transform

● Note error in the book (pg 59): 2D Fourier transform needs half the 
plane, not only the first quadrant!
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real, even

imaginary, odd

real, even

real, odd

phase change

Properties of the Fourier transform

ℱ {A⊗B} = ℱ {A}⋅ℱ {B}

ℱ {c Ad B} = cℱ {A}d ℱ {B}● Linearity
● Convolution

● Spatial scaling

● Spatial shift

● Symmetry
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Aliasing

Discarded 8 of every 9 pixels
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Aliasing
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Aliasing

Sampling distance
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spatial domain frequency domain

Revisiting sampling

continuous
function

sampling
function

sampled
function

sampled
function
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Avoiding aliasing

Discarded 8 of every 9 pixels
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Avoiding aliasing

Discarded 8 of every 9 pixelsLow-pass filtered image does
not contain high frequencies
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Aliasing in practice

Undersampled Not undersampled
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spatial domain frequency domain

Revisiting sampling

continuous
function

sampled
function

continuous
image

discrete
image
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Reconstruction

spatial domain frequency domain

continuous
function

sampled
function

ideal
interpolator

Ideal interpolator: sinc(x) = sin(x)/x
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Interpolation

Sinc function gives weights for each pixel in image.
Computing value at one point requires knowledge
of all samples.
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Interpolation

Sinc function is zero at all other grid points when 
origin matches a grid point: output is identical to 
sample value.
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Interpolation

An alternative interpretation of the convolution 
integral places a sinc function centered at each 
sample point, and adds them all together.
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Alternative interpolation kernels

sin(πx)/πx uses all data points
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Alternative interpolation kernels

uses 1 data point
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Alternative interpolation kernels

uses 2 data points
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Alternative interpolation kernels

4 cubic polynomials pieced together uses 4 data points

(don’t confuse with b-splines!)
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Alternative interpolation kernels

sin(πx) / (πx)  *  sin(πx/2) / (πx/2) uses 4 data points
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Alternative interpolation kernels

sin(πx) / (πx)  *  sin(πx/4) / (πx/4) uses 8 data points
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What is trilinear interpolation?
● In n-D images, interpolation can be done on each 

dimension independently:

– “bilinear” means linear interpolation in 2-D image
– “trilinear” means linear interpolation in 3-D image
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● Image arithmetic:
– So trivial it's not even mentioned in the book

● Point operations (next):
– Function that maps image values
– Independent of spatial location

● Geometric transforms (Anders’ lecture on Feb 4):
– Function that maps image coordinates
– Independent of image values

● Filtering (next 2 lectures):
– Function that changes image values based on local 

neighbourhood

Basic image operations
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Point operations
● Apply a function (mapping) to each pixel in the image, 

independent of pixel location
– Increase contrast
– Bring interesting grey-value range in view
– Make details visible

● Common:
– Change gamma 

– Contrast stretch

– Logarithmic stretch

– Clipping

– Histogram equalization

– Thresholding

f y = y 

f  y =ay

f  y ={a , ya
y , otherwise

f  y =a log y 

f  y =〈data−dependent 〉

f (y )=y> a
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Gamma
● Increases contrast at one end of the range at the 

expense of the other end of the range

=2=0.5

f  y = y 
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Gamma
● Increases contrast at one end of the range at the 

expense of the other end of the range

=2=0.5

f  y = y 
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Clipping
● Brings values outside of the range to the range 

boundary

Mapping:
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Histogram equalization
● Mapping derived from histogram: tries to make 

histogram as flat as possible

Mapping:
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Histogram equalization
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Threshold
● Simplest form of segmentation
● Associates each pixel to object or background based 

on the pixel's grey value
– Static or global threshold: same threshold for all pixels

– Adaptive or local threshold: threshold depends on local 
neighbourhood

– Hysteresis threshold: combine results of two thresholds

g x ={1 if f  x T
0 otherwise

g  x ={1 if f  x T  x 
0 otherwise
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Finding a threshold level
● For a global threshold, all relevant information is in the 

image's histogram
– Because no neighbourhood information is used, only each 

individual pixel’s grey value
– Histogram shows distribution of grey values
– Object and background often have separate peaks
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Bimodal histograms

Bayes minimum error
(theoretically optimal)

Local minimum
between peaks
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Bimodal histograms
● k-means clustering (“isodata” method)

– Ridler and Calvard (1978)
– Assumes the two modes are of similar width and height
– Iterative method, depends on initialisation

● Minimizing intra-class variance (“Otsu” method)
– Otsu (1979)
– Equivalent to maximizing inter-class variance (easy to compute)

● Minimizing error
– Kittler and Illingworth (1986)
– Assumes 2 Normal distributions

b
2
t =P1t P2t  [1t −2t  ]

2

J t =12 [P1t log1t P2t  log2t ]−2 [P1t logP1 t P2t logP2t ]
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Improving the histogram

histogram of pixels
with strong gradient
magnitude onlyForeground peak

much smaller than
background peak
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Unimodal histograms

Background peak

Foreground doesn't
have a peak!
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Unimodal histograms

Fitting a Gaussian to the
background peak

2σ

Chord method, a.k.a.:
● skewed bi-modality
● maximum distance to triangle
Zack, Rogers and Latt (1977)
Rosin (2001)
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Finding a threshold level

Other methods used besides histogram analysis:
● Manual determination on a training set of images

– Threshold becomes a “magic number”
– Results useless if imaging circumstances change
– E.g. in CT the grey-value is an absolute measure

● Using a priori knowledge:
– Volume: if it is known that 25% of the image is foreground, 

choose a threshold value so that 25% of the pixels are 
above it

– Shape: if round objects are expected, choose a threshold 
value that maximizes some roundness measure of the result

– …
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Multi-channel threshold

red

gr
e

en
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Multi-channel threshold

red

gr
ee

n
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Hysteresis threshold
High threshold

Low threshold

Regions in “low” that
have some pixels set
in “high”
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Summary of today’s lecture
● Convolution is important!
● Sampling property of convolution
● Fourier Domain useful for understanding convolution
● Convolution in Spatial Domain is multiplication in 

Fourier Domain

● Images can be interpolated with a convolution

● New threshold finding techniques

f  x ⊗h x  ℱ
⇒

F H 


