Today's lecture

- Repetition and refinement of some basic concepts:
 - What is an image?
 - Convolution
 - The Fourier Domain
 - Sampling
 - Aliasing
 - Interpolation
 - Point operations
 - Thresholding

Image definition

Continuous image

 $f: \mathbf{D}^n \to \mathbb{R}$, $\mathbf{D} \subset \mathbb{R}$

- Finite in size

- (D is a compact subdomain of \mathbb{R})
- Each point has a scalar value
- Multi-valued image

- $f: \mathbf{D}^n \to \mathbb{R}^k$, $\mathbf{D} \subset \mathbb{R}$
- Each point has multiple values
- Discrete image

$$f: \mathbf{D}^n \to \mathbb{R}$$
 , $\mathbf{D} \subset \mathbb{Z}$

- Sampled version of continuous image
- Sample values still real-valued!
- Digital image

$$f: \mathbf{D}^n \to \mathbb{Z}$$
 , $\mathbf{D} \subset \mathbb{Z}$

Sample values also discretized

Samples and pixels

- Sample: the value f(x) of a function at a point x
 - 1-D signals: people talk of "samples"
 - 2-D images: people talk of "pixels"
 - 3-D images: people talk of "voxels"
 - These are all the same thing! (suggested: imels)
- Pixels represented as little rectangles on the screen
 - This is the Voronoi tesselation of the samples in a rectangular grid

Alternative sampling grids

- Do we always need to use rectangular grids?
- Alternative in 2-D: hexagonal grid
 - Advantages:
 - All direct neighbours at same distance
 - All direct neighbours share an edge (no "connectivity paradox")
 - 3 directions of equal distance, vs 2 in square grid

Alternative sampling grids

Alternative sampling grids

- Alternatives in 3-D (generalizations of hexagonal grid):
 - Face centered cubic
 - Voronoi tessellation is rhombic dodecahedron
 - Tightest possible packing density (Kepler)
 - Body centered cubic
 - Voronoi tessellation is truncated octahedrons
 - Like hexagonal grid, all direct neighbors share faces

What is resolution?

How is this related to sampling density/pixel size? And how is this related to number of pixels?

Image Acquisition: Sampling

Oversampled

Correctly sampled

Undersampled

Wastes computer memory

Looses information

Image Acquisition: Sampling

Convolution

Convolution mimics Linear Time Invariant (LTI)

systems:

- Sampling

- Reconstruction

Microscope lenses,

CCD sensor

Electric circuits

Radio

- ...

Convolution

$$g(x) = \int_{-\infty}^{\infty} f(\xi) h(x - \xi) d\xi$$

Sum of infinite number of kernels, weighted with input function

For each output point, integral of multiplication of mirrored kernel with input function

Convolution

$$g(x) = \int_{-\infty}^{\infty} f(\xi) h(x - \xi) d\xi$$

• For discrete image and discrete kernel: finite sum

$$g[n] = \sum_{k=0}^{N-1} f[k] h[n-k]$$

Convolution properties

- Linear:
 - Scaling invariant: $(aA) \otimes B = a(A \otimes B)$
 - Distributive: $A \otimes (B+C) = A \otimes B + A \otimes C$
- Time Invariant: $shift(A) \otimes B = shift(A \otimes B)$
- Commutative: $A \otimes B = B \otimes A$
- Associative: $A \otimes (B \otimes C) = (A \otimes B) \otimes C$

The sampling property

Convolution at the image edge

Convolution at the image edge

Zero order hold

Convolution at the image edge

Periodic boundary condition

Symmetric boundary condition

Fourier transform in 1D

$$F(\omega) = \int_{-\infty}^{\infty} f(x) e^{-i\omega x} dx$$

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i\omega x} d\omega$$

$$\omega = 2\pi f = \frac{2\pi}{T}$$

$$F[k] = \sum_{n=0}^{N-1} f[n] e^{-i\frac{2\pi}{N}kn}$$

$$f[n] = \frac{1}{N} \sum_{k=0}^{N-1} F[k] e^{i\frac{2\pi}{N}kn}$$

Fourier (frequency) domain

Fourier transform in 2D, 3D, etc.

- Simplest thing there is! the FT is separable:
 - Perform transform along x-axis,
 - Perform transform along y-axis of result,
 - Perform transform along z-axis of result, (etc.)
- All the same properties apply as for 1-D Fourier Transform
- Note error in the book (pg 59): 2D Fourier transform needs half the plane, not only the first quadrant!

Properties of the Fourier transform

- Linearity
- Convolution
- $\mathscr{F}\{cA+dB\} = c\mathscr{F}\{A\}+d\mathscr{F}\{B\}$
 - $\mathscr{F}\{A \otimes B\} = \mathscr{F}\{A\} \cdot \mathscr{F}\{B\}$

- Spatial scaling
- Spatial shift
- Symmetry

Aliasing

Discarded 8 of every 9 pixels

Aliasing

Aliasing

Revisiting sampling

Avoiding aliasing

Discarded 8 of every 9 pixels

Avoiding aliasing

Low-pass filtered image does not contain high frequencies

Discarded 8 of every 9 pixels

Aliasing in practice

Undersampled

Not undersampled

Revisiting sampling

Reconstruction

Ideal interpolator: sinc(x) = sin(x)/x

Interpolation

Sinc function gives weights for each pixel in image. Computing value at one point requires knowledge of all samples.

Interpolation

Sinc function is zero at all other grid points when origin matches a grid point: output is identical to sample value.

Interpolation

An alternative interpretation of the convolution integral places a sinc function centered at each sample point, and adds them all together.

Alternative interpolation kernels

Alternative interpolation kernels

Alternative interpolation kernels

Alternative interpolation kernels

4 cubic polynomials pieced together (don't confuse with b-splines!)

uses 4 data points

Alternative interpolation kernels

Alternative interpolation kernels

What is trilinear interpolation?

• In *n*-D images, interpolation can be done on each dimension independently:

- "bilinear" means linear interpolation in 2-D image
- "trilinear" means linear interpolation in 3-D image

Basic image operations

- Image arithmetic:
 - So trivial it's not even mentioned in the book
- Point operations (next):
 - Function that maps image values
 - Independent of spatial location
- Geometric transforms (Anders' lecture on Feb 4):
 - Function that maps image coordinates
 - Independent of image values
- Filtering (next 2 lectures):
 - Function that changes image values based on local neighbourhood

Point operations

- Apply a function (mapping) to each pixel in the image, independent of pixel location
 - Increase contrast
 - Bring interesting grey-value range in view
 - Make details visible

• Common:

$$f(y) = y^{\gamma}$$

$$f(y) = ay$$

$$f(y) = a \log(y)$$

$$f(y) = \begin{cases} a, & y \leq a \\ y, & otherwise \end{cases}$$

$$f(y) = \langle data - dependent \rangle$$

$$f(y)=y>a$$

Gamma

• Increases contrast at one end of the range at the expense of the other end of the range $f(y) = y^y$

Gamma

• Increases contrast at one end of the range at the expense of the other end of the range $f(y) = y^3$

Clipping

 Brings values outside of the range to the range boundary

Histogram equalization

 Mapping derived from histogram: tries to make histogram as flat as possible

Histogram equalization

 Mapping derived from histogram: tries to make histogram as flat as possible

Threshold

- Simplest form of segmentation
- Associates each pixel to object or background based on the pixel's grey value
 - Static or global threshold: same threshold for all pixels

$$g(\vec{x}) = \begin{cases} 1 & \text{if } f(\vec{x}) > T \\ 0 & \text{otherwise} \end{cases}$$

Adaptive or local threshold: threshold depends on local neighbourhood

$$g(\vec{x}) = \begin{cases} 1 & \text{if } f(\vec{x}) > T(\vec{x}) \\ 0 & \text{otherwise} \end{cases}$$

Hysteresis threshold: combine results of two thresholds

Finding a threshold level

- For a global threshold, all relevant information is in the image's histogram
 - Because no neighbourhood information is used, only each individual pixel's grey value
 - Histogram shows distribution of grey values
 - Object and background often have separate peaks

Bimodal histograms

Bimodal histograms

- *k*-means clustering ("isodata" method)
 - Ridler and Calvard (1978)
 - Assumes the two modes are of similar width and height
 - Iterative method, depends on initialisation
- Minimizing intra-class variance ("Otsu" method)
 - Otsu (1979)
 - Equivalent to maximizing inter-class variance (easy to compute)

$$\sigma_b^2(t) = P_1(t)P_2(t)[\mu_1(t) - \mu_2(t)]^2$$

- Minimizing error
 - Kittler and Illingworth (1986)
 - Assumes 2 Normal distributions

$$J(t) = 1 + 2 \big[P_1(t) \log \sigma_1(t) + P_2(t) \log \sigma_2(t) \big] - 2 \big[P_1(t) \log P_1(t) + P_2(t) \log P_2(t) \big]$$

Improving the histogram

Unimodal histograms

Unimodal histograms

Finding a threshold level

Other methods used besides histogram analysis:

- Manual determination on a training set of images
 - Threshold becomes a "magic number"
 - Results useless if imaging circumstances change
 - E.g. in CT the grey-value is an absolute measure
- Using a priori knowledge:
 - Volume: if it is known that 25% of the image is foreground, choose a threshold value so that 25% of the pixels are above it
 - Shape: if round objects are expected, choose a threshold value that maximizes some roundness measure of the result

- ...

Multi-channel threshold

Multi-channel threshold

Hysteresis threshold

Regions in "low" that have some pixels set in "high"

Low threshold

Summary of today's lecture

- Convolution is important!
- Sampling property of convolution
- Fourier Domain useful for understanding convolution
- Convolution in Spatial Domain is multiplication in Fourier Domain

$$f(x) \otimes h(x) \stackrel{\mathscr{F}}{\Rightarrow} F(\omega) H(\omega)$$

Images can be interpolated with a convolution

New threshold finding techniques