Mathematical Morphology

Sonka 13.1-13.6 (13.5.1-13.5.6)+
(13.7 watershed segmentation) Ida-Maria Sintorn Ida.sintorn@cb.uu.se

Today's lecture

- SE, morphological transformations
- Binary MM
- Gray-level MM
- Granulometry applications
- Geodesic transformations
-(Adaptive SEs)

Morphology-form and structure

mathematical framework used for:

- pre-processing
- noise filtering, shape simplification, ...
- enhancing object structure, describing shape
- skeletonization, convex hull...
- segmentation

structuring element (SE)

- small set, B, to probe the image under study
- for each SE, define origo \& pixels in SE
- shape and size must be suited for the geometric properties for the objects

Morphological Transformation

- ψ is given by the relation of the image (point set X) and the SE (point set B).
- in parallel for each pixel (pixel under SE origo) in binary image: - check if SE is "satisfied"
- output pixel is set to 0 or 1 depending on used operation

pixels in output image if check is: SE fits

Erosion (shrinking)

For which points does the structuring element fit the set?
erosion of a set X by structuring element $B, \varepsilon_{B}(X)$:
all x in X such that B is in X when origin of $B=x$

$$
\mathrm{x} \ominus_{\mathrm{B}}=\varepsilon_{B}(X)=\left\{x \mid B_{x} \subseteq X\right\}
$$

\oplus Dilation (growing)

The points the SE hits when its origo is in the set?
dilation of a set X by structuring element $\mathrm{B}, \delta_{\mathrm{B}}(\mathrm{X})$: all x such that the reflection of B hits X when origin of $B=x$
$X \oplus B=\delta_{B}(X)=\left\{x \mid(\hat{B})_{x} \cap X \neq 0\right\}$

$\mathrm{SE}=\mathrm{B}=$

combining erosion and dilation

WANTED:
remove structures / fill holes without affecting remaining parts

SOLUTION:
combine erosion and dilation (using same SE)

closing

dilation followed by erosion, denoted • Smoothes contours, fuses breaks, eliminates holes and gaps $A \bullet B=(A \oplus B) \Theta B$

opening: roll ball(=SE) inside object
see B as a "rolling ball"
boundary of $A \circ B=$ points in B that reaches closest to A boundary when B is rolled inside A
closing: roll ball(=SE) outside object
boundary of $A \circ B=$ points in B that reaches closest to A boundary when B is rolled outside A

Save for break exercise

- Sketch the result of A first eroded by B1 and then dilated by B2

B1
B2

Qhit-or-miss transformation (®,Hмт)
find location of one shape among a set of shapes
"template matching"
$A \otimes B=\left(A \Theta B_{1}\right) \cap\left(A^{C} \Theta B_{2}\right)$
composite SE: object part (B_{1}) and background part (B_{2})
does B_{1} fit the object while, simultaneously,
B_{2} misses the object, i.e., fits the background?

hit-or-miss transformation ${ }_{(\otimes \text { нммт }}$

find location of one shape among a set of shapes SE=object part B_{1}, and background part B_{2}

$$
\begin{gathered}
A \otimes B=\left(A \Theta B_{1}\right) \cap\left(A^{C} \Theta B_{2}\right) \\
A \otimes B=\left(A \Theta B_{1}\right)-\left(A \oplus \hat{B}_{2}\right)
\end{gathered}
$$

B_{1} H
B_{2}

Top surface \& umbra

Umbra homeomorphism theorem

Umbra operation is a
homeomorphism from grayscale morphology to binary morphology
$\mathrm{f} \oplus \mathrm{b}=\mathrm{T}\{\mathrm{U}[\mathrm{f}] \oplus \mathrm{U}[\mathrm{b}]\}$

Gray-scale umbra erosion

Gray-scale umbra erosion

Gray scale erosion

$B(0)=0$
$B(1)=1$
$B(2)=0$

Gray scale erosion

Gray scale erosion

Example, gray-scale erosion flat SE , square 3×3

- b with positive elements \rightarrow darker output
- bright details are reduced
- If flat SE, erosion is min of f-b

Gray scale dilation

B
U[B]
Gray scale dilation of two functions as (binary) dilation of umbras

Gray scale dilation

Gray scale dilation

Example, gray-scale dilation

 flat SE, square 3×3- SE with positive elements \rightarrow brighter output
- dark details are reduced or eliminated
-If flat $S E$, dilation is max of $f+b$

Morphological opening

$$
\gamma_{B}(f)=\delta_{B}\left[\varepsilon_{B}(f)\right]
$$

Example, gray-scale opening, flat SE, square 3×3

- remove small bright details
- leave overall gray-levels
- leave larger bright features

Example, gray-scale closing, flat SE, square $3 x 3$

- remove dark details
- Leave overall gray-levels
- leave bright features

Granulometry

"Measurement of grain sizes of sedimentary rock"

- Measuring particle size distribution indirectly
- Shape information without
- segmentation
- separated particles
- Apply morphological openings of increasing size
- Compute the sum of all pixel values in the opening of the image

Geodesic transformations

Geodesic transformations

Geodesic erosion

Input: marker image f and mask image g

- Erode the marker image f with the unit ball.
- Output the maximum value of the erosion of f and the mask image g

$$
\varepsilon_{g}^{(1)}(f)=\varepsilon(f) \vee g
$$

Morpological reconstruction

- X is set of connected components X_{1}, \ldots, X_{n}. Y is markers in X.

- Reconstruction by dilation: Geodesic dilations until stability.
- Reconstruction by erosion: Geodesic erosions until stability.

Morpological reconstruction

- Reconstruction by dilation: Geodesic dilations until stability.

$$
\delta_{g}^{(n)}(f)=\underbrace{\delta_{g}^{(1)}\left(\delta_{g}^{(1)}\left(\ldots \delta_{g}^{(1)}(f)\right)\right)}_{n \text { times }}
$$

- Reconstruction by erosion: Geodesic erosions until stability.

$$
\varepsilon_{g}^{(n)}(f)=\underbrace{\varepsilon_{g}^{(1)}\left(\varepsilon_{g}^{(1)}\left(\ldots \varepsilon_{g}^{(1)}(f)\right)\right)}_{n \text { times }}
$$

Morphological reconstruction by dilation
Flat SE

Reconstruction by erosion: Minima imposition

Reconstruction by erosion: Minima imposition

When stability is reached:

All local minima except for the marked minimum are removed!
This can be used for seeded watershed!

| Application - Seeded watershed by |
| :---: | :---: |
| Minima imposition |

Application - Image compositing

Two images should be merged.
Decide where the "seam" should be.

Image compositing

Compute gradient.
Do seeded watershed with minima imposition.
(Seeds on the border of the image.)

Adaptive SE

The appropriate shape and size of a structuring element strongly depends on the image data and objects of interest
\Rightarrow Let the SE adapt to the local surroundings

Research from CBA: Vladimir Curic, Cris Luengo

Adaptive SE

- G(eneral)A(daptive)N(eighbourhood): based only on intensity range $=$ connected component
- Amoebas: Pathbased - combines distance and intensity (grow until or on the edge)
- S(alience)A(daptive)SE: Pathbased - uses an attribute (e.g., grad mag.) -weigthed distance transform from segmented objects (e.g., edges). No spatial weight. Only intensity sum
- Ellipse: based on structure tensor (local intensity direction)

