
Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Model-based segmentation
● Today we look at methods that search for image

features with certain characteristics, e.g.
– a closed, smooth contour
– a hand
– a face

● That is, they segment an object from the image
● These methods all have in common

– an initial guess (sometimes any random initialization)
– an iterative process that modifies the initial guess
– a final, stable shape that the iterative process converges to
– this stable point is a (local) minimum of an energy functional

(implicit or explicitly defined energy functional)

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Model-based segmentation
● Active Contour Models (= snakes, Deformable

Contours)
– in 3D: Active/Deformable Surface Models
– adapts to boundaries in the image

● Active Shape Models (= Point Distribution Models)
– creates a model using various examples
– describes the shape and its variability

● Active Appearance Models
– ASM including grey values within the shape

● Level Set Method
– curve evolution applied to contour detection
– active contours that can split apart and merge together

● Book: sections 7.2, 7.3, 10.3 and 10.4

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Active contour models
● Kass, Witkin & Terzopoulos (1988)
● In 2D usually called snakes
● A flexible line or closed contour that evolves over time

to some minimal energy configuration
– hopefully matching object boundaries in the image!

● Used for:
– automatic segmentation of objects
– interactive delineation of objects
– tracking objects over time in video

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Snakes
● A flexible line:

● A closed contour:

v s =  x s , y s 
T

s∈[0,1]

v 0 = v 1

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Snakes
● Modify the snake to find a local minimum in the energy

functional
E = ∫

0

1

E int v sEextv sds

Eext v s  = {
G⊗ I

−∣∇ I∣
2

∂

∂ n

∇ I=∇G⊗ I 

derivative of gradient direction
perpendicular to gradient

E int v s  =
1
2

{s∣v I s∣2s∣v IIs ∣2 }

“membrane” term “thin plate” term
(α and β often

constant)

Gaussian smoothed input image

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Snakes
● Minimizing this:

● through Euler-Lagrange equation yields this:

● We solve using gradient descent:

E = ∫
0

1
1
2

{∣v I s∣2∣v II s∣2 }Eext v sds

∂v s , t 
∂ t

= v II
s , t −v IIII

s , t −∇ Eextv s , t 

 v IIs−v IIIIs−∇Eext v s = 0

F⃗ int
F ext

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Snakes, discrete
● Discretizing the gradient gradient descent equation

∂v s , t 
∂ t

= v II
s , t − v IIII

s ,t −∇Eextv s , t 

∂X t

∂ t
= A X tf x X t ,Y t 

X t =  I− A 
−1

{X t−1 f x X t ,Y t }
(we assume f x X t ,Y t ≈ f x X t−1 ,Y t−1)

X
t
 is a vector with x-values

of coordinates of points along
the curve; Y

t
 is the y-values

X t−X t−1


= A X tf x X t ,Y t

step size A is a pentadiagonal banded
matrix (cyclic if curve is closed)
(invert with Cholesky decomposition)

f x =
∂

∂ x
Eext

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Things to consider
● Important parameters:

– α, β and γ
– E

ext

– initial snake {X
0
,Y

0
}

– number of iterations

● The curve needs to be sampled densely to be able to
compute accurately

● When the snake evolves, it is important to resample
the curve regularly

v IIII
s

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Snakes in action

input image - gradient magnitude evolving snake

E
ext

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Snakes in action

input image - gradient magnitude evolving snake

E
ext

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Issues with snakes
● Snakes cannot flow into elongated structures
● Snakes cannot move towards edges that are far away

– when increasing the size of the Gaussian for the gradient
magnitude, the edges of the object will move
(remember scale-space lecture)

● Snakes do not work well when the initial curve
intersects the edges you’re looking for

● Solution:
don’t use an external energy, but an external force!

When using Eext , the gradient descent equation had

an external force F ext=∇ Eext

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Improving the snake
● Add a dynamic force:

(depends on the curve)
– the balloon force

● Change the static force:
(independent of the curve,
usually depends on the input image)
– using the distance transform
– Gradient Vector Flow
– Vector Field Convolution

– or anything else you can come up with...

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

The balloon force
● Cohen (1989)
● Also known as pressure force
● Adds an outward, expanding force to the curve

(or an inward, contracting force)
● Requires the curve to be initialised inside the object

(or outside)
● Used in addition to the traditional static force
● Adds a new parameter to the method

v II s−v IIII s −∇ Eext v s ns = 0

the unit normal vector

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

The balloon force

input image - gradient magnitude evolving snake

E
ext

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

The balloon force

(play demo)

high gradient

low gradient

high intensity

high gradient

high gradient

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Static forces

 color = direction
saturation = strength

Fext=−∇ Eext

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

The distance force
● Cohen & Cohen (1993)
● Force based on the distance transform of the edges

– the force fields pulls the snake towards the closest edge,
no matter how far away the snake starts

Fext = −∇ DE = Canny I  D = DT E 

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

The distance force

input image gradient of
distance transform

evolving snake

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Gradient vector flow
● Xu & Prince (1998)
● More “refined” way of creating a force field across the

whole image
● Propagate gradient information

– stronger edges carry more weight
– force can pull snake into narrow structures
– normalize vectors

● Computed by finding that minimizes

E = ∫ ∣∇Ugvf∣
2
∣∇V gvf∣

2   ∣∇ Eext∣
2∣F gvf∇Eext∣ d x

smoothness term close to edges:
Fgvf = −∇ Eext

Fgvf=Ugvf ,V gvf 
T

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Gradient vector flow

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Gradient vector flow

input image GVF force evolving snake

this is how far the forces were propagated,
keep iterating to fill the image!

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Vector field convolution
● Li & Acton (2007)
● Very similar to GVF, but much easier & faster to

compute:
– create a vector field kernel
– convolve edge map with kernel
– normalize vectors

F vfc = ∣∇ I∣⊗k

k =  r 
−
n

k

ε is some small
value to avoid
division by 0

γ ∈ [1,3]
γ = 2 ⇒ gravitation!

n⃗ = (
−x
r

,
−y

r
)

r = √x2+ y2

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Vector field convolution

input image VFC force evolving snake

this is numerical inaccuracy
increase kernel size to avoid this!

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

The external forces

gradient distance GVF VFC

What do the improved external forces have in common?

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

What about noise?

gradient distance GVF VFC

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

What about noise?

gradient distance GVF VFC

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

What about initialization?

gradient distance GVF balloon

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Snakes in 3D
● Snakes are explicitly 2D constructs, but 3D

generalization is not impossible
● First “try” involved 2D snakes on successive slices of

the volume, initializing each with the final result of the
previous slice

● The better approach is with active surfaces:
– surface represented as a mesh
– internal forces (derivatives) calculated

using mesh neighbours
– all external force formulations

generalize easily to 3D

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Snakes in 3D

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Active shape models
● A snake uses application-specific knowledge by:

– the initialization (the initial shape to be deformed)
– the choice of parameters (α, β, γ, κ, …)
– the choice of external force

● Once the snake starts to deform no further knowledge
is used (it just looks for a stable point)

● Sometimes we know in advance the shape of the
object we are looking for

● How can we incorporate this information into the
snake deformation algorithm?

Adding shape information allows detection of partially
occluded shapes, for example.

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Active shape models
● Cootes, Taylor, Cooper & Graham (1994)
● Like a snake, detects an object in an image
● Control the possible ways that the snake deforms
● Learn the possible shapes from examples

For example:
when looking for a hand, we know
that the fingers can have many
different positions with respect to
the hand, but we also know that
there are exactly 5 of them, that
they all have a fixed length, and
that they cannot bend at e.g. 90˚

(All the examples I’m showing here
are from the Cootes et al. paper)

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Active shape models
● The Active Shape Model (ASM) consists of a set of points

describing a boundary, and for each point, a distance
along the x and y axes it is allowed to move

● The ASM is trained by (manually) selecting points along
the object’s contour in a set of training images
– in each image, each point must match the same location along

the contour of the object

● It is required that the training images contain all possible
shape variations – no shape changes will be allowed
unless they are represented in the test set!

● The ASM is fitted to a new image much like a snake, but
instead of internal forces there is a constraint on the
relative position of the points representing the boundary

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Example: resistors

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Example: resistors
body position “shoulder” shape

wire curvature

These are the 3 most
important modes of
variation captured by
the model

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

ASM training
● The training set can be seen as M (2N)-dimensional

vectors:

● Aligning training set:
– rotate, scale & translate each shape to align with 1st shape
– calculate mean shape
– normalize orientation, scale and origin of mean
– align all shapes to the mean
– recalculate mean & repeat until convergence

● After alignment, the vectors occupy a subset of ℝ2N

● Simplify the training set using PCA

x= x1 , y1 , x2 , y2 , ... , xN , y N 
T

Note: this divides up the differences between images into a
rigid transformation and a non-rigid deformation of the shape

M images
2 dimensions
N points

̂⃗x=
1
M
∑
i=1

M

x⃗ i

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Principal component analysis
● PCA extracts orthogonal vectors describing the most

important axes in the data
● Assumes normal (Gaussian) distribution of points!

λ
1
p

1

λ
2
p

2

d x i = x i−
x

S =
1
M ∑

i=1

M

dx i dx i
T

S pk = k pk

S is 2Nx2N covariance matrix
unit-length vector

eigenvalue

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

The active shape model
● Any allowed shape is given by:

● Any rotation, scaling and translation of an allowed
shape is also allowed

● Because of the assumption of normally distributed
points, certain shape variations cannot be modeled!

x = xP b P=p1 ,p2 , ... ,pK  K≤2 N

(matrix formed by first K eigenvectors)
weights to be fitted

−3 i≤b i≤3 i

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

When the model fails

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Fitting an ASM to an image
● Choose an initial placement

– origin (x
o
, y

o
), scale s & rotation θ

– use the mean shape, that is, all b
i
 = 0

● Repeat until convergence:
– look for a better position for each of the points on the shape
– split the movement into rigid and non-rigid components
– transform non-rigid components into a shape change
– constrain shape change to allowed shapes

● “Convergence” can be defined in many ways...

x = Ms ,  xPb T  xo , y o

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Fitting an ASM to an image
● Step 1: Look, for each point, along normal of curve, for

a strong edge
– this yields an adjustment for each point

d x⃗ composed of all d x⃗ j so
that x⃗+ d x⃗ is the new shape

x j

n

∣∇ I∣

m

d x j =  mn

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Fitting an ASM to an image

● Step 2: Find a ds, dθ, dx
o
 and dy

o
 that best aligns

● Step 3: Find residual adjustments in local
coordinate frame:

x to xd x

du = M
sd s−1 , d−1 {Ms ,  xP b d x−T d xo ,d y o}−xP b 

du

x = Ms ,  xPb T  xo , y o

xd x = Msd s ,d  xP bdu T  x od x o , y od y o

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Fitting an ASM to an image
● Step 4a: Map onto subdomain P:

● Step 4b: Update shape parameters & limit to
allowed range:

du

b

db = PTdu (note that PT=P−1)

(this is a least-squares approximation!)

{
s  ss d s
   d

xo  x oxo
d xo

y o  y oy o
d y o

bi  b ibi
db i

−3 i≤b i≤3 i

the weights ω make the
movement slower – this avoids
overshooting the target

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

t=0

t=80

t=200

ASM example

heart ventricle model
with 96 points, 12

degrees of freedom

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Active appearance models
● Just like ASM, but also includes information on grey

values inside of shape:
– 2N parameters describing boundary of shape
– PCA yields n shape vectors
– M parameters describing grey values

(i.e. the pixels after scaling, rotating and shifting the patch to the
mean shape)

– PCA yields m intensity vectors
– we now have n+m vectors, which we combine but weigh

differently, depending on relative importance
– perform PCA again on matrix of vectors, further simplifying

the model

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Level sets
● Developed for physics simulations, to model

solid/liquid interfaces that move at curvature-
dependent speeds
 Osher & Sethian (1988)

● Applied to images as a substitute for snakes
 Caselles, Catté, Coll & Dibos (1993)
 Malladi, Sethian & Vemuri (1995)

● Addresses problems with snakes:
– sampling of snake is problematic
– snake cannot split or merge

(if there’s two objects in the image, start with two snakes)
– snakes in higher dimensions are complex

● Simple to understand, a little harder to implement

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Level sets
● Instead of defining a curve through a set of sample

points, we embed the curve in a higher-dimensional
space
– for example: instead of a 1D curve in 2D, we have a 2D

surface in 3D

● The curve is the set of points for which the surface
crosses the 0 level

v s
x 

 = {=0 }

x

y

x

y

z

γ

ψ

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Level sets

Note:
● nothing special is required for the curve to split into two
● the function ψ is always well-behaved
● this is trivial to generalise to any number of dimensions
● the shape of the function away from the zero level set is not

important
● the function is always positive inside the object, negative outside

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

● The surface is modified according to a speed function

● The speed function contains the equivalent of the
internal and external forces of the snake

Level sets

t  = {x , t =0} ∂
∂ t

ψ+ F∣∇ψ∣ = 0

F = k F AFG FG = ∇⋅
∇
∣∇∣

k =
1

1∣∇G⊗ I∣
(small at edges)

advection term,
constant speed
(= balloon force)

geometry term,
curvature dependent

(= internal forces)

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Improving level sets
● If the image gradient is weak, the curve can pass it
● Once passed this point, it cannot go back
● Solution: add a term that pulls curve towards edges

– seems logical, considering what we learned with snakes!

∂
∂ t

  k F A∇⋅
∇

∣∇∣∣∇∣ ∇ k ∇ = 0

old speed function
pulls towards edge

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Implementing level sets
● The initial function ψ is generated from the initial

closed contour using a distance function,
where d is the distance from to the contour

● The closed contour can always be recovered by
looking for the zero crossings of ψ

● The function k is an appropriate speed only on the
contour
– level sets other than the zero level set will move at different

speeds, which can create very large gradients in ψ

● Two solutions:
– 1: extend the function values of k for ψ=0
– 2: regularly reinitialise the function ψ from its zero crossings

x , t=0=±d
x

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Narrow band implementation
● Level sets usually implemented in a narrow band

around ψ=0
– this saves a lot of computation

● When the curve comes too close to the band edge:
– reinitialise the function ψ
– this defines a new band

6 px

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Example

(from Malladi et al., 1995)

Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Summary
● Snake – Active Contour Model

– simple, versatile
– lots of parameters to tweak
– 3D extension not trivial but doable
– one object, one snake

● ASM – Active Shape Model
– a snake with knowledge
– trained with a set of examples
– robust against partial occlusions

● Level Set
– “different way of implementing a snake”
– nD extension trivial
– adapts to any number of contours

