
Atelier B

Reusable Components

Reference Manual

version 3.6

ATELIER B
Reusable Components—Reference Manual
version 3.6

Document made by CLEARSY.

This document is the property of CLEARSY and shall not be copied, duplicated or
distributed, partially or totally, without prior written consent.

All products names are trademarks of their respective authors.

CLEARSY
ATELIER B Maintenance
Europarc de PICHAURY

1330 Av. J.R. Guilibert Gauthier de la Lauzière - Bât C2
13856 Aix-en-Provence Cedex 3

France

Tel: +33 (0)4 42 37 12 99
Fax: +33 (0)4 42 37 12 71

Email: maintenance.atelierb@clearsy.com

CONTENTS iii

Contents

1 Introduction 1

2 Index of Basic Machines 3

3 Index of Library Machines 5

4 Description of Basic Machines 13

4.1 BASIC ARRAY VAR: Implanting a one dimensional table 14

4.2 BASIC ARRAY RGE: Implementing a Two Dimensional Array 17

4.3 BASIC IO: vt100 style inputs/outputs . 20

5 Description of Library Machines 25

5.1 L ARITHMETIC1: Extended Integer Operations 26

5.2 L ARRAY1: One Dimensional Array, with Initialization Loop 29

5.3 L ARRAY3: Array with Non Ordered Values, Maximum Operations 31

5.4 L ARRAY5: Array with Ordered Values, Sort Operation 34

5.5 L PFNC: Partial Function . 37

5.6 L SEQUENCE: Creating a Sequence . 41

5.7 L SET: Creating a Set . 45

5.8 L ARRAY1 RANGE: A Range of Arrays of the Same Size, with Numerical
Indexes . 48

5.9 L ARRAY3 RANGE: A Range of Arrays of the Same Size, with Non Or-
dered Values, Maximum Operations . 51

5.10 L ARRAY5 RANGE: Range of Arrays of the Same Size, with Ordered
Value Numerical Indexes, Sort Operation 56

5.11 L SEQUENCE RANGE: Range of Sequences 61

5.12 L ARRAY COLLECTION: collection of arrays of the same size 67

5.13 L ARRAY1 COLLECTION: array of the same size, with numerical indexes 69

iv Reusable Components—Reference Manual

INTRODUCTION 1

1 Introduction

The reusable components supplied with Atelier B are basic machines and library machines.

Basic machines are the modelisation in B of modules manually coded in C, C++ or ADA.
These modules are used to encapsulate the operating system functions that must be used;
they must usually be performed in taking into account the specificities of the hardware
that the security software will run on. This is why there are few basic machines delivered
with ”Atelier B”.

Library machines are abstract machines written in B language. They generally model a
type of mathematical object (sequence, function, etc.) and offer the operations that allow
the handling of these objects.

Unlike basic machines, library machines are properly performed using the B method, i.e,
using refining and implementation in B along with complete proof of the set. This proof
may in principle be executed at any time in order to check its validity (warning: proving
methods may depend on the demonstrator version used). Therefore, unlike basic machines,
library machines may be numerous and complex while remaining secure as they are proven.

To use basic machines, simply reference them in the appropriate B project, by INCLUDES,
IMPORTS or any derived actions. When the final project is translated into a traditional
programming language, the translation of the library machine implementations used must
be redone if this was not already done at Atelier B installation.

Library machines are implemented on basic machines. As they are performed until the
implementation in B language, they provide complete examples of use in the B method.
They especially contain examples of proven WHILE loops. For practical advice on proving
WHILE loops, refer to the ”B Language User Manual”.

The user may directly use library machines just like he uses basic machines. Sometimes
the implementation of a library machine may use the services of a machine that it does
not create an instance for (use by SEES) to avoid duplications. In this case the user will
have to create the instance in question (using IMPORTS) by following the indications in
the “IMPORTS REQUIRED” section of the description for each library machine.

When the final project C, C++ or ADA compilation is performed, the library compilation
is automatically performed if necessary. Performing link editing will then enable incor-
poration into the final executable program only those object files that correspond to the
library machines actually used. All this is performed in the Makefile produced by Atelier
B. To integrate a software component produced by Atelier B into a traditional product,
use this Makefile as a basis or refer to the “ADA Translator User Manual”.

Warning:

This warning regards the use of reusable components with the Ada, C and C++ translators

2 Reusable Components—Reference Manual

supplied with Atelier B. These translators are experimentals. Their goal is to show that
it is possible to translate some B0 implementations into classical programming languages.
Therefore, their use is not guaranteed. Especially the reusable components use may induce
errors when compiling the code produced by the translators. The reusable components
must be considered as examples. Each user can develop his own library machines according
to his needs.

INDEX OF BASIC MACHINES 3

2 Index of Basic Machines

BASIC ARRAY VAR: implanting a one dimension table

VAL ARRAY read a table element

STR ARRAY write a table element

BASIC ARRAY RGE: implementing a two dimensional table

VAL ARR RGE read a table element

STR ARR RGE write a table element

COP ARR RGE copy a table line to another

CMP ARR RGE compare two table lines

BASIC IO: vt 100 style input/output

INTERVAL READ entry by the operator of a number in mm..nn.

INT WRITE print a number.

BOOL READ entry by a TRUE or FALSE boolean operator

BOOL WRITE print the TRUE or FALSE condition.

CHAR READ entry by a character’s operator.

CHAR WRITE print a character.

STRING WRITE print a message.

4 Reusable Components—Reference Manual

INDEX OF LIBRARY MACHINES 5

3 Index of Library Machines

L ARITHMETIC1: extended integer operations: MIN, MAX, INC, DEC,
EXP, SQRT, LOG

VAL ARR RGE read a table element

STR ARR RGE write a table element

COP ARR RGE copy a table line to another

CMP ARR RGE compare two table lines

BASIC IO: vt 100 style input/output

MIN minimum of two numbers.

MAX maximum of two numbers.

INC increment a number.

DEC decrement a number.

EXP exponential.

SQRT integer square root by default.

LOG BY DEFAULT logarithm by default.

LOG BY EXCESS logarithm by excess.

L ARRAY1: one dimensional table with initialization loop

VAL ARRAY value of an element (promoted operation)

STR ARRAY write an element (promoted operation)

SET ARRAY write the same value in a portion of the table

L ARRAY3: table with non-ordered values, maximum operations

VAL ARRAY value of an element (promoted operation).

STR ARRAY write an element (promoted operation).

SET ARRAY write a same value in a table portion (promoted operation).

SWAP ARRAY exchange two elements (promoted operation).

RIGHT SHIFT ARRAY shift a portion to the large index (promoted operation).

6 Reusable Components—Reference Manual

LEFT SHIFT ARRAY shift a portion to the small index (promoted operation).

SEARCH MAX EQL ARRAY search for a value in a portion of the table (promoted
operation).

SEARCH MIN EQL ARRAY search for a value in a portion of the table (promoted
operation).

REVERSE ARRAY invert the order of the elements in a portion of the table.

L ARRAY5: table with ordered values, sort operation

VAL ARRAY value of an element (promoted operation).

STR ARRAY write an element (promoted operation).

SET ARRAY write the same value in a portion of the table (promoted opera-
tion).

SWAP ARRAY exchange two elements (promoted operation).

RIGHT SHIFT ARRAY shift a portion to the large index (promoted operation).

LEFT SHIFT ARRAY shift a portion to the small index (promoted operation).

SEARCH MAX EQL ARRAY search for a value in a portion of the table (promoted
operation).

SEARCH MIN EQL ARRAY search for a value in a portion of the table (promoted
operation).

REVERSE ARRAY invert the order of elements in a portion of the table (promoted
operation).

SEARCH MIN GEQ ARRAY search for the first element that exceeds a value (pro-
moted operation).

ASCENDING SORT ARRAY sort of a table portion.

L PFNC: partial function

VAL PFNC value of the function for an element in its domain

STR PFNC overloads the partial function with a couple

XST PFNC tests if an index is in the partial function domain

RMV PFNC removes a couple from the partial function

SET PFNC overloads a part of the function with a constant

SWAP PFNC exchanges the images for two domain indexes

RIGHT SHIFT PFNC right shift of a domain part

LEFT SHIFT PFNC left shift of a domain part

SEARCH MAX EQL PFNC searches for a value in the partial function

SEARCH MIN EQL PFNC searches for a value in the partial function

REVERSE PFNC reverses the order of elements for a portion of the domain

INDEX OF LIBRARY MACHINES 7

ASCENDING SORT PFNC sorts in a portion of the domain

L SEQUENCE: building a sequence

LEN SEQ returns the current size of the sequence.

IS FULL SEQ is used to determine if the sequence is full (size = LS maxsize).

IS INDEX SEQ is used to determine whether ii is a valid index.

VAL SEQ value of an element in the sequence.

FIRST SEQ returns the first element in the sequence.

LAST SEQ returns the last element in the sequence.

PUSH SEQ add vv to the end of the sequence.

POP SEQ removes the last element from the sequence (its value is lost).

STR SEQ changes the value of an element in the sequence.

RMV SEQ removes an element from the middle of the sequence.

INS AFT SEQ inserts vv right after index ii.

CLR SEQ clears the sequence.

TAIL SEQ removes the first element from the sequence.

KEEP SEQ only keeps the first elements in the sequence.

CUT SEQ cuts the nn first elements from the sequence.

PART SEQ only retains part ii..jj in the sequence.

REV SEQ reverses the order of elements in the sequence.

FIND FIRST SEQ finds vv in the sequence, from the start.

FIND LAST SEQ finds vv in the sequence, from the end.

L SET: creating a set

CARD SET returns the cardinal for the set.

IS FULL SET identifies if the set is full (card = LSET maxsize).

IS INDEX SET identifies if a number is a valid index.

VAL SET value of a element in the set.

FIND SET finds an element in the set.

RMV SET removes an element from the set.

INS SET inserts an element in the set.

CLR SET clears all elements from the set.

L ARRAY 1 RANGE: array of tables of the same size with numerical indexes

VAL ARR RGE value of an element (promoted operation).

8 Reusable Components—Reference Manual

STR ARR RGE write an element (promoted operation).

COP ARR RGE copy a table to another (promoted operation).

CMP ARR RGE compare two tables (promoted operation).

DUP ARR RGE duplicate the same table into a series of tables.

SET ARR RGE copy the same value to an index set in one of the tables.

PCOP ARR RGE copy part of one of the tables to a different table to a given posi-
tion.

PCMP ARR RGE find the first element that is different from two parts of two tables.
A Boolean element indicates if this element was found and, in this
case, the index of this element is returned.

L ARRAY 3 RANGE: range of tables of the same size, with numerical in-
dexes, and values that are not ordered, maximum operations

VAL ARR RGE value of an element (promoted operation).

STR ARR RGE write an element (promoted operation).

COP ARR RGE copy a table to another (promoted operation).

CMP ARR RGE compare two tables (promoted operation).

DUP ARR RGE duplicate the same table to an array of tables (promoted opera-
tion).

SET ARR RGE copy the same value to a range in one of the tables (promoted
operation).

PCOP ARR RGE copy part of one of the tables to a different table, in a given position
(promoted operation).

PCMP ARR RGE find the first different element from two parts in two tables. A
Boolean element indicates whether this element was found and, in
this case, the index of this element is returned (promoted opera-
tion).

SWAP RGE swap two elements in a table.

RIGHT SHIFT RGE shift a table range to the large index.

LEFT SHIFT RGE shift a table range to the small index.

SEARCH MAX EQL RGE find the last element that equals a value in a table range.

SEARCH MIN EQL RGE find the first element that equals a value in a table range.

REVERSE RGE reverse the order of the elements of a table part.

L ARRAY 5 RANGE: array of tables of the same size, with numerical in-
dexes, with ordered values, sort operations

VAL ARR RGE value of an element (promoted operation).

STR ARR RGE write an element (promoted operation).

INDEX OF LIBRARY MACHINES 9

COP ARR RGE copy a table to another (promoted operation).

CMP ARR RGE compare two tables (promoted operation).

DUP ARR RGE duplicate the same table in a range of tables (promoted operation).

SET ARR RGE copy the same value to an index range in one of the arrays (pro-
moted operation).

PCOP ARR RGE copy a range from one of the tables to a different table, at a given
position (promoted operation).

PCMP ARR RGE find the first different element in two ranges in two tables. A
Boolean element indicates that this element was found and, in this
case, the index of this element is returned (promoted operation).

SWAP RGE swap two elements in a table (promoted operation).

RIGHT SHIFT RGE shift a table range to the large index (promoted operation).

LEFT SHIFT RGE shift a table range to the small index (promoted operation).

SEARCH MAX EQL RGE search for the last element that equals a value in a table
range (promoted operation).

SEARCH MIN EQL RGE search for the first element that equals a value in a table
range (promoted operation).

REVERSE RGE reverses the order of the elements of a part of a table (promoted
operation).

SEARCH MIN GEQ RGE search for the first element that exceeds a value in a table
range.

ASCENDING SORT RGE sort a table range into ascending order.

L SEQUENCE RANGE: sequence range

LEN SEQ RGE determines the length of a sequence.

IS FULL SEQ RGE determines whether a sequence is full.

IS INDEX SEQ RGE determines whether an integer is in a sequence range.

VAL SEQ RGE gives the value of a sequence for a valid index.

FIRST SEQ RGE gives the first element in a sequence.

LAST SEQ RGE gives the last element in a sequence.

PUSH SEQ RGE adds an element to a sequence.

POP SEQ RGE removes the last element from a sequence.

STR SEQ RGE changes the value of a sequence element.

RMV SEQ RGE removes an element from a sequence, with a size that decreases by
1.

INS SEQ RGE adds an element to a sequence, with a size that increases by 1.

CLR SEQ RGE clears a sequence.

TAIL SEQ RGE removes the first element from a sequence.

10 Reusable Components—Reference Manual

KEEP SEQ RGE only keeps in a sequence the N first elements.

CUT SEQ RGE cuts the N first elements from a sequence.

PART SEQ RGE only keeps in a sequence the indexes in a range between two limits.

REV SEQ RGE reverses the order of the elements in a sequence.

FIND FIRST SEQ RGE finds a value in a sequence, returns a Boolean element indicat-
ing that it was found and if yes returns the smallest corresponding
index.

FIND LAST SEQ RGE finds a value in a sequence, returns a Boolean element indicat-
ing that it was found and if yes returns the largest corresponding
index.

COP SEQ RGE copies from one sequence to another.

CMP SEQ RGE comparison of two sequences.

PCOP SEQ RGE partially copies one of the sequences to another.

PCMP SEQ RGE partial comparison of two sequences.

L ARRAY COLLECTION: collection of arrays of the same size

CRE ARR COL returns a Boolean element indicating that there is still an array
free in the collection and gives the index of this free array.

DEL ARR COL releases the identified array.

VAL ARR COL reads an element from one of the valid arrays.

STR ARR COL writes an element from one of the valid arrays.

COP ARR COL copies one of the arrays to another.

CMP ARR COL compares two tables.

L ARRAY1 COLLECTION: collection of arrays of the same size with numer-
ical index

CRE ARR COL returns a Boolean element indicating that there is an array free
in the collection and the index of this free array (promoted oper-
ation).

DEL ARR COL releases the listed array (promoted operation).

VAL ARR COL read a element from on of the valid arrays (promoted operation).

STR ARR-COL write a element from one of the valid arrays (promoted operation).

COP ARR COL copies from one of the arrays to another (promoted operation).

CMP ARR COL compares two tables (promoted operation).

SET ARR COL copies the same value to an index range in one of the arrays.

PCOP ARR COL copies part of one of the arrays to another, to a given position.

PCMP ARR COL find the first different element between the two parts of the two
different arrays. A Boolean element indicates if this element was
found and in this case, the index of this element is returned.

INDEX OF LIBRARY MACHINES 11

L RELATION : complete binary relations

op reset The relation becomes the empty relation.

op isFullRelation Returns TRUE only if the cardinal of the relation equals max nb-
2tupple.

op add Adds a couple to the relation.

op remove Removes a couple to the relation.

op cardinal Returns the relation cardinal 1

op belongsTo Checks if a couple is present in the relation.

1i.e. the number of couple present in the relation.

12 Reusable Components—Reference Manual

DESCRIPTION OF BASIC MACHINES 13

4 Description of Basic Machines

The basic machines supplied with Atelier B allow either the creation of dynamic arrays
that cannot be obtained using B0, or producing models using vt100 style inputs/outputs.

“dynamics arrays” are arrays which size depends on the machine parameters. Such arrays
cannot be realised directly in B0, the safety design of the ADA, C and C++ translators
do not allow to treat this case. For example, the following construction is not allowed:

IMPLEMENTATION
mm(xx)

...
CONCRETE VARIABLES

mytab
INVARIANT

mytab ∈ (0. .xx) → NAT
...
END

Such an array would have to be realised using BASIC ARRAY VAR.

The atelier actual version is composed of three basic machines:

BASIC ARRAY VAR Arrays with dimension 1.

BASIC ARRAY RGE Arrays with dimension 2.

BASIC IO Usual inputs/outputs management.

This chapter presents this three machines.

The basic machine BASIC IO is intended to the model designing. It mustn’t be considered
as safe.

WARNING: The manual implementations of the basic machines BASIC ARRAY VAR
and BASIC ARRAY RGE destined for the translators supplied with Atelier B are pro-
vided as demonstration. They are not safe, and are not appropriated in all the B use
contexts.

14 Reusable Components—Reference Manual

4.1 BASIC ARRAY VAR: Implanting a one dimensional table

OPERATIONS

VAL ARRAY read a table element

STR ARRAY write a table element

EXAMPLE

Example of use with listed sets:

MACHINE
array

SETS
FONTS = {Times,Serif,Courier};
FTYPE = {fixed,unfixed}

VARIABLES
fixedsz

INVARIANT
fixedsz ∈ FONTS → FTYPE

INITIALISATION
fixedsz:={Times 7→ unfixed,

Serif 7→ fixed, Courier 7→ fixed}
END

IMPLEMENTATION
array 1

REFINES
array

IMPORTS
BASIC ARRAY VAR(FONTS,FTYPE)

INVARIANT
arr vrb = fixedsz

INITIALISATION
STR ARRAY(Times,unfixed);
STR ARRAY(Serif,fixed);
STR ARRAY(Courier,fixed)

END

arr vrb is the name of the table encapsulated by BASIC ARRAY VAR

DESCRIPTION

BASIC ARRAY VAR modelizes one dimensional arrays. Such arrays cannot be created
directly in B0 if their size dependend on the machine parameters (“dynamic arrays”). The
current design of ADA or C translators does not allow handling this case. The following
construction is therefore illegal:

IMPLEMENTATION
mm(xx)

...
VARIABLES

mytab
INVARIANT

mytab ∈ (0. .xx) → NAT
...
END

This kind of table should be generated using BASIC ARRAY VAR.

MACHINE PARAMETERS

BASIC ARRAY VAR (BAV INDEX,BAV VALUE): BAV INDEX is the set of values
used to index the table, BAV VALUE is the set of possible values for table elements.

DESCRIPTION OF BASIC MACHINES 15

The B language rule relating to the possible values of the BAV VALUE parameter ensure
that: if a computer variable can contain elements of MININT..MAXINT, then it can
contain those of BAV VALUE. For example, B rules forbid assigning BAV VALUE the
value of MAXINT+1,MAXINT+2

VAL ARRAY

syntax vv ← VAL ARRAY(ii)

preconditions ii must be a BAV INDEX

outputs vv is a BAV VALUE, the value of the array at position ii.

STR ARRAY

syntax STR ARRAY(ii,vv)

preconditions ii must be a BAV INDEX and vv must be a BAV VALUE

The value vv is stored in the array at ii index.

C++ LANGUAGE

In C++, the array is realised by an integer array. The accesses to this array are done using
method that refuse the index used between 0 and the array size, guaranting an optimal
memory use.

The array is dynamically reserved when launching the program. If the size indicated by
the formal parameters is too big, the program stops with the following message:

Virtual memory exceede in ‘‘new’’

C LANGUAGE

The realisation in C is based on the same principles as in C++. The stop message on
initial reservation failure is:

Fatal error: Malloc of X bytes failed
Execution of current application is aborted

ADA LANGUAGE

The use of generic packaging guarantees an optimal memory occupation. No restrictions
are made on the instanciation parameters. On initial reservation failure, an exception
stops the program.

16 Reusable Components—Reference Manual

PROGRAMMING

Example of use with literal sets:

MACHINE
narr

VARIABLES
myvar

INVARIANT
myvar ∈ 0. .2 → 0. .1

INITIALISATION
myvar:={0 7→ 0,1 7→ 1,2 7→ 1}

END

IMPLEMENTATION
narr 1

REFINES
narr

IMPORTS
BASIC ARRAY VAR(0. .2,0. .1)

INVARIANT
arr vrb = myvar

INITIALISATION
STR ARRAY(0,0);
STR ARRAY(1,1);
STR ARRAY(2,1)

END

Another example. Only the implementation is presented. The write of a machine refined
by this implementation is an exercice for the reader:

IMPLEMENTATION
parr 1

REFINES
parr

IMPORTS
BASIC ARRAY VAR(FONTS,FTYPE)

VALUES
FONTS = 5. .7;
FTYPE = 3. .4

INVARIANT
arr vrb = fixedsz

INITIALISATION
STR ARRAY(5,3);
STR ARRAY(6,4);
STR ARRAY(7,5)

END

NOTE: The possible values of the BASIC ARRAY VAR parameters are given by the B
language rules, (refer to section 12.2 page 574 of the BBOOK)

DESCRIPTION OF BASIC MACHINES 17

4.2 BASIC ARRAY RGE: Implementing a Two Dimensional Ar-
ray

OPERATIONS

VAL ARR RGE read an array element

STR ARR RGE write an array element

COP ARR RGE copy an array line to another

CMP ARR RGE compare two array lines

EXAMPLE

Example of use, two lines and three columns array:

MACHINE
bitab

SETS
LGNS = {ll1,ll2}

VARIABLES
mytab

INVARIANT
mytab ∈ LGNS → (1. .3 → 0. .255)

INITIALISATION
mytab:={ll1 7→ {1 7→ 7,2 7→ 8,3 7→ 9},

ll2 7→ {1 7→ 0,2 7→ 1,3 7→ 2}}
END

IMPLEMENTATION
bitab 1

REFINES
bitab

IMPORTS
BASIC ARRAY RGE(1. .3,0. .255,LGNS)

INVARIANT
arr rge = mytab

INITIALISATION
STR ARR RGE(ll1,1,7);
STR ARR RGE(ll1,2,8);
STR ARR RGE(ll1,3,9);
STR ARR RGE(ll2,1,0);
STR ARR RGE(ll2,2,1);
STR ARR RGE(ll2,3,2)

END

The variable arr rge is the name of the encapsulated array par BASIC ARRAY RGE

DESCRIPTION

BASIC ARRAY RGE models two dimensional arrays. Such arrays cannot be created
directly in B0 if their size depends on the machine parameters (“dynamic array”). The
safe design of the ADA, C++ or C translators do not allow to treat this case. The following
construction is forbidden:

IMPLEMENTATION
mm(xx)

...
CONCRETE VARIABLES

mytab
INVARIANT

mytab ∈ (0. .10) → (0. .xx)×(0. .xx)
...
END

18 Reusable Components—Reference Manual

Such an array must be implemented using BASIC ARRAY RGE.

MACHINE PARAMETERS

BASIC ARRAY RGE(BAR INDEX,BAR VALUE,BAR RANGE):

BAR INDEX represents the column indexes.

BAR VALUE is the set of the possible values for the array elements,

BAR RANGE represents the line indexes.
The B language rules concerning the possible values of the BAR VALUE
parameter ensure that a computing variable being able to contain the ele-
ments of MININT..MAXINT, then it can contain those of BAR VALUE.
For example, the B rules do not permit to give to BAR VALUE the value
MAXINT+1,MAXINT+2.

VAL ARR RGE

syntax vv ← VAL ARR RGE(rr,ii)

preconditions ii must be a BAR INDEX, rr must be a BAR RANGE

outputs vv is an element of BAR VALUE, which value is the array value at po-
sition ii, line rr.

STR ARR RGE

syntax STR ARR RGE(rr,ii,vv)

preconditions rr must be an element of BAR RANGE, ii an element of BAR INDEX
and vv an element of BAR VALUE

Value vv is stored in the array line rr, index ii.

COP ARR RGE

syntax COP ARR RGE(dest,src)

preconditions dest and src must be elements of BAR RANGE

The src line is copied to the dest line.

CMP ARR RGE

syntax bb ← CMP ARR RGE (range1,range2)

preconditions range1 and range2 must be elements of BAR RANGE

outputs bb is an element of BOOL, that takes the TRUE value if the two lines
are equal.

C++ LANGUAGE

In C++, the array is realised by an array of pointers, pointing on integers arrays. The
access to these arrays are done using methods that refuse the index used between 0 and
the arrays size, guaranting an optimal memory occupation.

The memory is dynamically reserved when lauching the program. If the size indicated by
the formal parameters is too big, the program stops with the following message:

Virtual memory exceeded in ‘new’

DESCRIPTION OF BASIC MACHINES 19

C LANGUAGE

The realisation in C is based on the same principles as in C++. The stop message on the

initial reservation failure is:
Fatal error: Malloc of X bytes failed
Execution of current application is aborted

ADA LANGUAGE

The use of generic packages guarantees an optimal memory occupation. No restriction is
made on the instancing parameters. On an initial reservation failure, an exception stops
the program.

20 Reusable Components—Reference Manual

4.3 BASIC IO: vt100 style inputs/outputs

OPERATIONS

INTERVAL READ operator input of an integer in mm..nn.

INT WRITE print an integer.

BOOL READ operator input of a Boolean TRUE or FALSE state

BOOL WRITE print TRUE or FALSE.

CHAR READ operator input of a character.

CHAR WRITE print a character.

STRING WRITE print a message.

SIMPLE EXAMPLE

The following implementation displays “hello” on the terminal:

MACHINE
bonj

OPERATIONS
main = skip

END

IMPLEMENTATION
bonj 1

REFINES
bonj

IMPORTS
BASIC IO

OPERATIONS
main = begin

STRING WRITE("hello\n")
end

END

DESCRIPTION

BASIC IO is used for simple input/output actions on a terminal. This basic machine is
used to build models. Such I/O cannot be considered as safe.

In UNIX, the system devices used are standard input and standard output (stdin and
stdout), they can therefore be redirected.

INTERVAL READ

syntax bb ← INTERVAL READ(mm,nn)

preconditions mm and nn must be NATs so that mm≤nn

outputs bb integer in mm..nn

The operator inputs an integer of the interval mm..nn. The input format forces to type a
succession of number(s) followed by RETURN. The first input character must be a number.
On the opposite case, the input fails “ 3” is not valid). When a character that is not the
first input is not a number anymore, this character, as all the following ones, are ignored:
“3e2” is a valid input of the integer 3. As long as the input is false, the message“THIS IS
NOT A NUMBER IN mm..nn” is displayed and a new entry is required.

DESCRIPTION OF BASIC MACHINES 21

INT WRITE

syntax INT WRITE(vv)

preconditions vv must belong to NAT

Output number vv, with no return.

BOOL READ

syntax bb ← BOOL READ

outputs bb must be Boolean.

The operator enters Boolean TRUE or FALSE conditions, with no character before it (for
example: “TRUE” is rejected because of the space before it). As long as the operator has
not made a valid entry, the message “THIS IS NOT A BOOL VALUE: type TRUE or
FALSE” is displayed and a new entry is required.

BOOL WRITE

syntax BOOL WRITE(bb)

preconditions bb must be Boolean

Output TRUE or FALSE, with no return.

CHAR READ

syntax cc ← CHAR READ

outputs cc must be part of 0..255

Operator entry of a character that is interpreted as a number in 0..255. Type in the
character followed by return. If several characters has been typed, only the first one is
taken into account (example: “ cdef” is understood as ”=32). In C, pressing Return only
returns 10, ctrl-D (EOF) returns 0. In ADA, only the ’visible’ characters entries (i.e, no
control characters) are accepted.

CHAR WRITE

syntax CHAR WRITE(vv)

preconditions vv must belong to the range 0..255

Displays the cc character on-screen (example: CHAR WRITE(10) to produce a return).
Remember, a single quote means “prime” the language’s notation conventions, and B.
CHAR WRITE(’A’) for example, means nothing. On the contrary, the quoted strings are
valid elements in a formula, they serve for STRING WRITE below.

STRING WRITE

syntax STRING WRITE(ss)

preconditions ss must be an element in the STRING set

Will display a character string on-screen. For ss use quoted strings. A “C type” formatting
is used, even for a translation into ADA, i.e,:

\t produces a tab
\E produces Escape
\B produces a sound
\" produces a quote

22 Reusable Components—Reference Manual

KNOWN PROBLEMS

STRING does not have a coherent definition. The prover proves that any character string
belongs to STRING due to an ad hoc rule, that does not derive from the definition STRING
= seq(CHAR). In addition, using a STRING type local variable in an implementation is
not possible. To be completely rigorous, nothing ensures that the operator performs all
the requested entries. Therefore the operations for entering the true data entry module
(BASIC IO.c for example) do not really implant the specifications of the corresponding
B operations.

PROGRAMMING

A more complete example:

MACHINE
bio

OPERATIONS
main = skip

END

IMPLEMENTATION
bio 1

REFINES
bio

IMPORTS
BASIC ARITHMETIC,BASIC IO

OPERATIONS
main = var zz,bb,cc in

zz ←− INTERVAL READ(0,100);
STRING WRITE("this is the value : ");
INT WRITE(zz);
CHAR WRITE(10);
bb ←− BOOL READ;
STRING WRITE("this is the value : ");
BOOL WRITE(bb);
CHAR WRITE(10);
cc ←− CHAR READ;
STRING WRITE("this is the value : ");
INT WRITE(cc);
STRING WRITE(" = ");
CHAR WRITE(cc);
CHAR WRITE(10)

end

END

Execution example:

ATELIER-B% bio
sdfsdf
THIS IS NOT A NUMBER IN 0..100
20
this is the value: 20
CRUE
THIS IS NOT A BOOL VALUE: type TRUE or FALSE
TRUE
this is the value: TRUE
cvf

DESCRIPTION OF BASIC MACHINES 23

this is the value: 99 = c
ATELIER-B%

NOTE: To be completely rigorous, nothing ensures that the operator performs all the
entries requested. The entry loops of the concrete module (BASIC IO.c for example) do
not really implant the specifications of the corresponding operations.

Possible evolutions:

It should be possible to define in the machine BASIC IO., abstract variables modeling
the inputs/outputs; it should then be possible to specify the required interactions of the
external system. The abstract machine that needs to handle inputs/outputs will use
BASIC IO notions (by SEES or INCLUDES) to represent the required interactions.

24 Reusable Components—Reference Manual

DESCRIPTION OF LIBRARY MACHINES 25

5 Description of Library Machines

The library machines are all intended for creating mathematical objects, except machine
L ARITHMETIC1 that provides certain arithmetical functions. The modeled mathemat-
ical objects are:

total functions : these are machines contain “ARR” (array) in their name;

partial functions : machines with the “PFNC” (partial function) in their name;

sets : these are machines with the “SET” (set) in their name;

sequences : these are machines with the “SEQ” (sequence) in their name.

For each mathematical object, it is possible to realize either a variable representing the
object, or a variable representing several objects of this type. For each type of object, it
is therefore possible to realize:

• The object itself;

• An array of objects with the same type, same size, these are machines with a name
containing the “RGE” (range) radical;

• A partial function of objects with the same size and same type, these are machines
with a name containing the “COL” (collection) radical;

• A partial function of objects with the same type, but with various sizes (“OBJ”
radical).

The “RGE” and “COL” type machines produce objects that consume the memory neces-
sary for the maximum number of required objects. For example, if we create a range or
a collection of three sequences of at least ten elements, we will always require 30 memory
spaces; but the use of a collection avoids the user program to manage the sequences avail-
able/occupied. Object machines reserve a memory space that may be freely distributed
depending on the created objects and their size. Mathematical objects listed above are not
all available on the different types of machines, refer to library machines table of contents
for the list that corresponds to the current version.

WARNING : Most of the library machines are based on the basic machines BASIC-
ARRAY VAR and BASIC ARRAY RGE. The manual implementations of the basic machines
BASIC ARRAY VAR and BASIC ARRAY RGE destined to the translators supplied with Ate-
lier B are provided as a demonstration.They are not safe, and not appropriate in all the
B use context. In the case of a more complete use, the user would have to realize these
basic machines.

26 Reusable Components—Reference Manual

5.1 L ARITHMETIC1: Extended Integer Operations

The “integer” term refers to the elements of NAT.NAT that is the set of the natural
integers between 0 and MAXINT.

OPERATIONS

MIN minimum of two integers.

MAX maximum of two integers.

INC increment an integer strictly inferior to MAXINT.

DEC decrement a literal integer.

EXP exponentiation.

SQRT default integer square root.

LOG BY DEFAULT default logarithm.

LOG BY EXCESS logarithm by excess.

EXAMPLE

The example below shows a machine that uses a certain number of functionalities of the
machine L ARITHMETIC1.

MACHINE
m1

OPERATIONS
xx ← op1 = any tt where

tt ∈ NAT ∧ tt×tt = 16
then

xx:=tt
end;
xx ← op2 = any tt where

tt ∈ NAT ∧ 3tt = 27
then

xx:=tt
end

END

IMPLEMENTATION
m1 1

REFINES
m1

IMPORTS
L ARITHMETIC1,

OPERATIONS
xx ← op1 = begin

xx ← SQRT(16)
end;
xx ← op2 = var rr in

xx,rr ← LOG BY DEFAULT (3, 27)
end

END

DESCRIPTION

L ARITHMETIC1 offers arithmetical operations such as roots and logarithms, operations
on the elements NAT and dedicated to calculatory applications. Calculus being integers
values, the search operation for the logarithm and the square root return the best 1 ap-
proaching value in NAT. The used algorithms are optimized.

MACHINE PARAMETERS

None.

1 The NAT element immediatly inferior or superior wether the calcul is performed by inferior value or
superior value

DESCRIPTION OF LIBRARY MACHINES 27

MIN

syntax uu ← MIN(vv,ww)

preconditions vv and ww must be in NAT.

outputs uu = min ({vv,ww})

MAX

syntax uu ← MAX(vv,ww)

preconditions vv and ww must be in NAT.

outputs uu receives max({vv,ww})

INC

syntax uu ← INC(vv)

preconditions vv must be in 0..MAXINT-1.

outputs uu = vv+1

DEC

syntax uu ← DEC(vv)

preconditions vv must be in 1..MAXINT.

outputs uu = vv-1

EXP

syntax rr ← EXP(xx,nn)

preconditions xx and nn must be in NAT. xx and nn must not both be nil. xxnn must
be less than or equal to MAXINT.

outputs rr receives xxnn

EXP returns xx to the power of nn. Calculating 00 is illegal (00 is not defined). The
implementation uses a fast algorithm based on breaking down into base 2 of nn (log2(nn)
iterations).

SQRT

syntax nn ← SQRT(pp)

preconditions pp must be in NAT.

outputs nn so that nn×nn ≤ pp < (nn+1)×(nn+1)

SQRT returns the largest nn so that nn×nn ≤ pp. The implementation uses an algo-
rithm that performs SQRT(nn) iterations, where each iteration costs two additions and a
subtraction.

LOG BY DEFAULT

syntax uu,rr ← LOG BY DEFAULT(vv,ww)

preconditions ww and vv are two natural integers and vv is between 2 and MAXINT.

outputs uu is the smallest natural so that vv(uu+1) is strictly greater than ww.
By definition, uu is a natural integer. rr takes the value vvuu.

28 Reusable Components—Reference Manual

LOG BY DEFAULT in base vv of ww: returns the smallest uu value so that ww<vv(uu+1).
This gives vvuu≤ww, except if ww<vv (example: ww = 0). Does not work for vv = 0 or
1 as 0ii and 1ii are constants. rr receives the value of vvuu, which easily allows judging
the error made.

LOG BY EXCESS

syntax uu,bb ← LOG BY EXCESS(vv,ww)

preconditions ww belongs to NAT and vv is an element of the intervall 2..MAXINT.

outputs uu receives the smallest natural so that vvuu is greater than or equal to
ww. uu must be in NAT. bb is an element of BOOL, it indicates whether
the logarithm is an exact one.

LOG BY EXCESS in base vv in ww: returns the smallest uu so that ww≤vvuu. WARN-
ING: vvuu may exceed MAXINT! Does not work for vv = 0 or 1 as 0ii and 1ii are constants.
bb equals TRUE if ww = vvuu.

IMPORTS REQUIRED

None.

DESCRIPTION OF LIBRARY MACHINES 29

5.2 L ARRAY1: One Dimensional Array, with Initialization Loop

OPERATIONS

VAL ARRAY value of an element (promoted operation)

STR ARRAY write an element (promoted operation)

SET ARRAY write the same value in a portion of the array

EXAMPLE

Use SET ARRAY to initialize an array:

MACHINE
m1

VARIABLES
vv

INVARIANT
vv ∈ 0. .10 → 0. .255

INITIALISATION
vv :=(0. .10)×{5}

END

IMPLEMENTATION
m1 1

REFINES
m1

IMPORTS
i1.L ARRAY1(0. .255,10)

INVARIANT
(arr vrb is the variable in L ARRAY1)
i1.arr vrb = vv

INITIALISATION
i1.SET ARRAY(0,10,5)

END

DESCRIPTION

As it is possible, L ARRAY1 is used instead of BASIC ARRAY VAR. L ARRAY1 re-
alises, using an array, an abstract variable representing a function. It is then possible to
have an initialization operation of the entire function or of a part of it (initialization loop).

The starting part of the function performed is an interval: if not, it would not be possible
to indicate a portion of this set without mentioning all elements involved.

MACHINE PARAMETERS

L ARRAY1(LAU VALUE, LAU maxidx): LAU VALUE is the set of possible values for
the array elements, 0..LAU maxidx is the set of array indexes.

VAL ARRAY

syntax vv ← VAL ARRAY(ii)

preconditions ii must be in 0..LAU maxidx

outputs vv is an element of LAU VALUE, the array value at position ii.

30 Reusable Components—Reference Manual

STR ARRAY

syntax STR ARRAY(ii,vv)

preconditions ii and vv must belong to the 0..LAU maxidx and LAU VALUE respec-
tively.

vv value is stored in the array at ii index. SET ARRAY

syntax SET ARRAY (ii,jj,vv)

preconditions ii..jj is a sub-set of 0..LAU maxidx and vv an element of LAU VALUE.
For implementation reasons 2, jj and MAXINT must be different.

The value vv is stored in the array for all the indexes between ii to jj. If ii>jj, the array
does not change.
Note that it would not have been advisable to set ii≤jj as a precondition of this operation,
as this would have limited its use. Let us consider the case of a call to SET ARRAY in
a loop. The last iteration fo the loop contain s a call with the form SET ARRAY (ii,
jj, vv) with ii=jj+1. The presence of a precondition in the definition of the operation
SET ARRAY would force us to “guard” all the calls to SET ARRAY by an IF. More
generally, the precondition must be selected as minimal to protect us fromm a B code of
“defensive” aspect.

IMPORTS REQUIRED

None.

WARNING: The implementation of this machine creates the default instance for the
BASIC ARRAY VAR machine (IMPORTS BASIC ARRAY VAR(...)). The addition of
an instance of the machine BASIC ARRAY VAR requires choosing a new instance name,
as, for example: i1.BASIC ARRAY VAR).

2Indeed, the loops used make a pre-incrementation, that does not produce literal excedent)

DESCRIPTION OF LIBRARY MACHINES 31

5.3 L ARRAY3: Array with Non Ordered Values, Maximum Op-
erations

OPERATIONS

VAL ARRAY value of an element (promoted operation).

STR ARRAY write an element (promoted operation).

SET ARRAY write the same value in an array portion (promoted operation).

SWAP ARRAY exchange two elements (promoted operation).

RIGHT SHIFT ARRAY shift a portion to the main index (promoted operation).

LEFT SHIFT ARRAY shift a portion to the small index (promoted operation).

SEARCH MAX EQL ARRAY search for a value in an array (promoted operation).

SEARCH MIN EQL ARRAY search for a value in an array portion (promoted opera-
tion).

REVERSE ARRAY reverse the order of elements in an array portion.

EXAMPLE

The example below is a machine that represents the color assigned to 101 points, this color
may be red, green or blue for each point. An operation is used to find a red dot.

MACHINE
m1

SETS
COLOR = {red, green, blue}

VARIABLES
color

INVARIANT
color ∈ 0. .100 → COLOR

INITIALISATION
color :=(0. .100) ×{red}

OPERATIONS
ii,bb ← trouve red = pre

rouge ∈ ran(color)
then

ii :∈ color−1[{red}] ||
bb :∈ BOOL

end

END

IMPLEMENTATION
m1 1

REFINES
m1

IMPORTS
i1.L ARRAY3(COLOR,100)

INVARIANT
i1.arr vrb = color

INITIALISATION
i1.SET ARRAY(0,100,red)

OPERATIONS
ii,bb ← trouve red =
var bb in

ii,bb ←
i1.SEARCH MAX EQL ARRAY(0,100,red)

end

END

DESCRIPTION

L ARRAY3 is the most complete of the one dimensional array machines that do not
require that the output set be part of an interval. L ARRAY5 has been constrained. It
is therefore possible to create arrays with values that are elements of a listed set while
having access to complete operations such as element order reversal. The operation that

32 Reusable Components—Reference Manual

is not available is the one that would require an order relationship on the array elements:
sort.

MACHINE PARAMETERS

L ARRAY3(LAT VALUE,LAT maxidx): LAT VALUE is the set of possible values for
array elements, 0..LAT maxidx is the set of array indexes.

VAL ARRAY

syntax vv ← VAL ARRAY(ii)

preconditions ii must be in 0..LAT maxidx

outputs vv is a LAT VALUE, it is the value of the array at position ii.

STR ARRAY

syntax STR ARRAY(ii,vv)

preconditions ii must be in 0..LAT maxidx and vv must belong to LAT VALUE

The vv value is stored in the array at index ii.

SET ARRAY

syntax SET ARRAY(ii,jj,vv)

preconditions ii..jj must be a subset of 0..LAT maxidx and vv belong to LAT VALUE.
For implementation reasons it is also necessary that jj be different from
MAXINT.

The vv value is stored in the array for all indexes between ii and jj. If ii>jj, the array will
not change.

SWAP ARRAY

syntax SWAP ARRAY(ii,jj)

preconditions ii,jj must be in 0..LAT maxidx.

The ii and jj elements in the array are exchanged.

RIGHT SHIFT ARRAY

syntax RIGHT SHIFT ARRAY(ii,jj,nn)

preconditions ii,jj,nn must be in 0..LAT maxidx, with ii≤jj and jj+nn≤LAT maxidx
to make possible the possible the shift to the right by nn spaces.

Part ii+nn..jj+nn receives a copy of part ii..jj of the array (shift nn spaces to the right).

LEFT SHIFT ARRAY

syntax LEFT SHIFT ARRAY(ii,jj,nn)

preconditions ii,jj must be in 0..LAT maxidx, with ii≤jj. nn must be NAT with nn≤ii
to make possible the shift to the left by nn places. For implementation
reasons, jj must be not equal MAXINT.

The ii-nn..jj-nn part receives a copy of part ii..jj from the array (shift nn spaces to the
left).

DESCRIPTION OF LIBRARY MACHINES 33

SEARCH MAX EQL ARRAY

syntax rr,bb ← SEARCH MAX EQL ARRAY(ii,jj,vv)

preconditions ii and jj must be in 0..LAT maxidx, ii≤jj and vv belong to LAT VALUE.

outputs TRUE if vv was found, FALSE if not rr is a NAT, if bb = TRUE then rr
is the largest index in the array worth vv.

Search for an array element equal to vv, by scanning the ii..jj part starting from jj.

SEARCH MIN EQL ARRAY

syntax rr,bb ← SEARCH MIN EQL ARRAY(ii,jj,vv)

preconditions ii and jj must be in 0..LAT maxidx, ii≤jj and vv belong to LAT VALUE.

outputs TRUE if vv was found, FALSE if not. rr is a NAT, if bb = TRUE, then
rr is the smallest index in the array worth vv.

Search for an array element that equals vv, by scanning the ii..jj part starting from ii.

REVERSE ARRAY

syntax REVERSE ARRAY(ii,jj)

preconditions ii and jj must be in 0..LAT maxidx.

Reverse the order of elements in the ii..jj portion of the array.

IMPORTS REQUIRED

(instances to import as the implementation tree for this library machine

sees them with SEES)

BASIC ARITHMETIC; BASIC BOOL.

WARNING: The implementation of this machine creates the default instance for the
BASIC ARRAY VAR machine (clause IMPORTS BASIC ARRAY VAR(...)). Therefore
if another instance is necessary, it must be given a different instance name (for example:
i1.BASIC ARRAY VAR).

34 Reusable Components—Reference Manual

5.4 L ARRAY5: Array with Ordered Values, Sort Operation

OPERATIONS

VAL ARRAY value of an element (promoted operation).

STR ARRAY write an element (promoted operation).

SET ARRAY write the same value to a portion of an array (promoted
operation).

SWAP ARRAY exchange two elements (promoted operation).

RIGHT SHIFT ARRAY shift a portion to the large index (promoted operation).

LEFT SHIFT ARRAY shift a portion to the small index (promoted operation).

SEARCH MAX EQL ARRAY search for a value in a portion of the array (promoted
operation).

SEARCH MIN EQL ARRAY search for a value in a portion of the array (promoted
operation).

REVERSE ARRAY reverse the order of the elements in a portion of the array
(promoted operation).

SEARCH MIN GEQ ARRAY search for the first element that exceeds a value (pro-
moted operation).

ASCENDING SORT ARRAY sort a portion of the array.

EXAMPLE

MACHINE
m1

VARIABLES
vv

INVARIANT
vv ∈ 0. .4 → 0. .255 ∧
∀xx.(xx ∈ 0. .3 ⇒

vv(xx)≥vv(xx+1))
INITIALISATION

vv : (vv ∈ 0. .4 → 0. .255 ∧
∀xx.(xx ∈ 0. .3 ⇒

vv(xx)≥vv(xx+1)))
END

IMPLEMENTATION
m1 1

REFINES
m1

IMPORTS
L ARRAY5(0,255,4)

INVARIANT
arr vrb = vv

INITIALISATION
SET ARRAY(0,4,50);
STR ARRAY(2,10);
STR ARRAY(4,30);
ASCENDING SORT ARRAY(0,4);
REVERSE ARRAY(0,4)

END

DESCRIPTION

L ARRAY5 is the most complete of the one dimensional array machines. It especially
comprises a sort operation implanted using a shift sort (fast algorithm).

DESCRIPTION OF LIBRARY MACHINES 35

MACHINE PARAMETERS

L ARRAY5(LAC minval,LAC maxval,LAC maxidx): LAC minval..LAC maxval is the
set of possible values for the elements in the array, 0..LAC maxidx is the set of index values
for the array. LAC minval, LAC maxval, LAC maxidx must be NATs: this machine
does not allow negative values. It is also necessary for LAC minval≤LAC maxval and
1≤LAC maxidx.

VAL ARRAY

syntax vv ← VAL ARRAY(ii)

preconditions ii must be in 0..LAC maxidx

outputs vv is in LAC minval..LAC maxval, is the array value at position ii.

STR ARRAY

syntax STR ARRAY(ii,vv)

preconditions ii must be in 0..LAC maxidx and vv in LAC minval..LAC maxval and
LAC VALUE.

The vv value is stored in the array at index ii.

SET ARRAY

syntax SET ARRAY(ii,jj,vv)

preconditions ii..jj must be included in 0..LAC maxidx and vv must be in LAC VALUE.
For implementation, it is also necessary that jj be different from the
MAXINT constant.

The vv value is stored in the array for all indexes from ii to jj. If ii>jj, the array does not
change.

SWAP ARRAY

syntax SWAP ARRAY(ii,jj)

preconditions ii,jj must be in 0..LAC maxidx.

The ii and jj elements in the array are exchanged.

RIGHT SHIFT ARRAY

syntax RIGHT SHIFT ARRAY(ii,jj,nn)

preconditions ii,jj,nn must be in 0..LAC maxidx, with ii≤jj and jj+nn≤LAC maxidx
to make possible the right shift by nn spaces.

The ii+nn..jj+nn part receives a copy of the ii..jj part of the array (shift right by nn
spaces).

LEFT SHIFT ARRAY

syntax LEFT SHIFT ARRAY(ii,jj,nn)

preconditions ii,jj must be in 0..LAC maxidx, with ii≤jj. nn must be a NAT with nn≤ii
to allow the left shift by nn spaces. For implementation reasons, jj cannot
equal MAXINT.

The ii-nn..jj-nn part receives a copy of the ii..jj part of the array (shift left by nn spaces).

36 Reusable Components—Reference Manual

SEARCH MAX EQL ARRAY

syntax rr,bb ← SEARCH MAX EQL ARRAY(ii,jj,vv)

preconditions ii and jj must be in 0..LAC maxidx, ii≤jj and vv be in LAC VALUE.

outputs TRUE if vv was found, FALSE if not. rr is a NAT, if bb = TRUE, then
rr is the highest index in the array worth vv.

Search for an array element equal to vv, by scanning the ii..jj part starting from jj.

SEARCH MIN EQL ARRAY

syntax rr,bb ← SEARCH MIN EQL ARRAY(ii,jj,vv)

preconditions ii and jj must be in 0..LAC maxidx, ii≤jj and vv be in LAC VALUE.

outputs TRUE if vv was found, FALSE if not. rr is a NAT, if bb = TRUE then
rr is the smallest index in the array worth vv.

Search for an array element equal to vv, by scanning the ii..jj part starting from ii.

REVERSE ARRAY

syntax REVERSE ARRAY(ii,jj)

preconditions ii and jj must be in 0..LAC maxidx.

Reverse the order of the elements in the ii..jj portion of the array.

SEARCH MIN GEQ ARRAY

syntax ii,bb ← SEARCH MIN GEQ ARRAY(jj,kk,vv)

preconditions jj and kk must be in 0..LAC maxidx, jj≤kk and vv be in LAC minval..
LAC maxval. For implementation location reasons, kk must not equal
the MAXINT constant.

outputs TRUE if an element that is greater or equal to vv was found, FALSE if
not. ii is a NAT, if bb = TRUE, then ii is the smallest index in the image
array that is greater than or equal to vv.

Search for an element that is greater than or equal to vv in jj..kk starting from jj.

ASCENDING SORT ARRAY

syntax ASCENDING SORT ARRAY(ii,jj)

preconditions ii and jj must be in 0..LAC maxidx. For implementation reasons, ii and
jj must not equal MAXINT.

Shift sort, in ascending order (the smallest first) on the ii..jj portion.

IMPORTS REQUIRED

(instances to import as the implementation tree for this library machine

sees them with SEES)

BASIC ARITHMETIC; BASIC BOOL.

WARNING: The implementation of this machine creates the default instance for the
BASIC ARRAY VAR machine (clause IMPORTS BASIC ARRAY VAR(...)). Therefore
if another instance is required it must be given a different instance name (for example:
i1.BASIC ARRAY VAR).

DESCRIPTION OF LIBRARY MACHINES 37

5.5 L PFNC: Partial Function

OPERATIONS

VAL PFNC value of the function for an element in its domain

STR PFNC overloads the partial function with a pair

XST PFNC test that an index is in the partial function domain

RMV PFNC removes a pair from the partial function

SET PFNC overloads a part of the function with a constant

SWAP PFNC exchanges the images for two domain indexes

RIGHT SHIFT PFNC right shift part of the domain

LEFT SHIFT PFNC left shift part of the domain

SEARCH MAX EQL PFNC search for a value in the partial function

SEARCH MIN EQL PFNC search for a value in the partial function

REVERSE PFNC reverse the order of elements in a portion of the domain

ASCENDING SORT PFNC sort in a portion of the domain

EXAMPLE

MACHINE
m1

VARIABLES
pf

INVARIANT
pf ∈ 0. .10 7→ 0. .255

INITIALISATION
pf := {4 7→ 6}

END

IMPLEMENTATION
m1 1

REFINES
m1

IMPORTS
L PFNC(0,255,10)

INVARIANT
pfnc vrb = pf

INITIALISATION
STR PFNC(4,6)

END

DESCRIPTION

L PFNC implements a partial function with almost all of the operations available in
L ARRAY5 (In fact only SEARCH MIN GEQ is not used). The practical usefulness of
partial functions is that they dispense with the need to add a ”non existent” or ”unused”
element in the input sets in order to implant them as total functions. The implementation
of L PFNC performs these elements by using the seldom used MAXINT value.

MACHINE PARAMETERS

L PFNC(LPF minval,LPF maxval,LPF maxidx): LPF minval..LPF maxval is the in-
put set of the function, 0..LPF maxidx is the source set. LPF minval, LPF maxval,

38 Reusable Components—Reference Manual

LPF maxidx must be NATs: this machine does not allow negative values. Moreover,
LPF minval≤LPF maxval and 1≤LPF maxidx; as well as LPF maxval<MAXINT: This
is because MAXINT is used to indicate that the corresponding index is not part of the
partial function. Again to simplify implementation, it is also illegal to have LPF maxidx
= MAXINT.

VAL PFNC

syntax vv ← VAL PFNC(ii)

preconditions ii must be in the partial function domain

outputs vv is in LPF minval..LPF maxval, it is the value of the array at position
ii.

STR PFNC

syntax STR PFNC(ii,vv)

preconditions ii must be in 0..LPF maxidx and vv be in LPF minval..LPF maxval.

The partial function is overloaded by {ii 7→ vv}.

XST PFNC

syntax bb ← XST PFNC(ii)

outputs bb is TRUE if ii is in the domain of the function, FALSE if not.

RMV PFNC

syntax RMV PFNC(ii)

preconditions ii must be in the domain of the partial function.

The {ii7→pfnc vrb(ii)} pair is removed from the partial function pfnc vrb.

SET PFNC

syntax SET PFNC(ii,jj,vv)

preconditions ii..jj must be included in 0..LPF maxidx and vv be in LPF minval..LPF-
maxval. ii and jj must be NATs.

The partial function is overloaded by (ii..jj)×vv. If ii>jj,

ii..jj is blank and the partial function is not modified, but it is still necessary for ii and jj
to be NATs.

SWAP PFNC

syntax SWAP PFNC(ii,jj)

preconditions ii,jj must be in the domain of the partial function.

The ii and jj elements in the array are exchanged.

DESCRIPTION OF LIBRARY MACHINES 39

RIGHT SHIFT PFNC

syntax RIGHT SHIFT PFNC(ii,jj,nn)

preconditions ii,jj,nn must be in 0..LPF maxidx, with ii≤jj and jj+nn≤LPF maxidx
to allow the right shift by nn spaces. It is also necessary for ii..jj to be
included in the domain of the partial function.

The ii+nn..jj+nn part is overloaded by a copy of the ii..jj part in the partial function (shift
by nn spaces to the right).

LEFT SHIFT PFNC

syntax LEFT SHIFT PFNC(ii,jj,nn)

preconditions ii,jj must be in 0..LPF maxidx, with ii≤jj. nn must be a NAT with nn ≤
ii to allow the left shift by nn spaces. In addition it is necessary for ii..jj
to be included in the domain of the partial function.

The ii-nn..jj-nn part is overloaded by a copy of the ii..jj part in the partial function (shift
left by nn spaces).

SEARCH MAX EQL PFNC

syntax rr,bb ← SEARCH MAX EQL PFNC(ii,jj,vv)

preconditions ii and jj must be in 0..LPF maxidx, ii≤jj and vv be in LPF minval..LPF-
maxval.

outputs TRUE if vv was found, FALSE if not, rr is a NAT, if bb = TRUE, then
rr is the largest index, the image of which by the partial function is vv.

Search for an array element that equals vv, by scanning the ii..jj part, starting from jj.

SEARCH MIN EQL PFNC

syntax rr,bb ← SEARCH MIN EQL PFNC(ii,jj,vv)

preconditions ii and jj must be in 0..LPF maxidx, ii≤jj and vv be in LPF minval..LPF-
maxval.

outputs TRUE if vv was found, FALSE if not, rr is a NAT, if bb = TRUE, then
rr is the smallest index, the image of which by the partial function is vv.

Search for an array element that equals vv, by scanning the ii..jj part starting from ii.

REVERSE PFNC

syntax REVERSE PFNC(ii,jj)

preconditions ii and jj must be in 0..LPF maxidx, and ii..jj must be included in the
domain of the partial function.

Reverse the order of the elements in the ii..jj portion of the partial function.

ASCENDING SORT PFNC

syntax ASCENDING SORT PFNC(ii,jj)

preconditions ii and jj must be in 0..LPF maxidx, and ii..jj must be included in the
domain of the partial function.

Shift sort, in ascending order (the smallest first) in the ii..jj portion.

40 Reusable Components—Reference Manual

IMPORTS REQUIRED

(instances to import as the implementation tree for this library machine

sees them with SEES) BASIC ARITHMETIC; BASIC BOOL.

WARNING: The implementation of this machine creates the default instance for the
BASIC ARRAY VAR machine (clause IMPORTS BASIC ARRAY VAR(...)). Therefore
if another instance is necessary, it must be given a different instance name (for example:
i1.BASIC ARRAY VAR).

DESCRIPTION OF LIBRARY MACHINES 41

5.6 L SEQUENCE: Creating a Sequence

OPERATIONS

LEN SEQ returns the current size of the sequence.

IS FULL SEQ shows whether the sequence is full (size = LS maxsize).

IS INDEX SEQ shows whether ii is a valid index.

VAL SEQ value of an element in the sequence.

FIRST SEQ returns the first element in the sequence.

LAST SEQ returns the last element in the sequence.

PUSH SEQ adds vv to the end of the sequence.

POP SEQ removes the last element from the sequence (its value is lost).

STR SEQ changes the value of an element in the sequence.

RMV SEQ removes an element from the middle of the sequence.

INS AFT SEQ inserts vv right after index ii.

CLR SEQ clears the sequence.

TAIL SEQ removes the first element from the sequence.

KEEP SEQ only keeps the nn first elements in the sequence.

CUT SEQ cuts the nn first elements from the sequence.

PART SEQ only keeps the ii..jj portion in the sequence.

REV SEQ reverses the order of the elements in the sequence.

FIND FIRST SEQ searches for vv in the sequence, starting from the beginning.

FIND LAST SEQ searches for vv in the sequence, starting from the end.

EXAMPLE

The example below shows the use of L SEQUENCE for a listed set.

MACHINE
m1

SETS
ST = {classic,baroque}

VARIABLES
vv

INVARIANT
vv ∈ seq(ST) ∧
size(vv)≤10

INITIALISATION
vv :=[baroque,baroque]

IMPLEMENTATION
m1 1

REFINES
m1

IMPORTS
L SEQUENCE(10,ST)

INVARIANT (seq vrb is the variable in L SEQUENCE)
seq vrb = vv

INITIALISATION
PUSH SEQ(baroque) (L SEQUENCE guarantees
PUSH SEQ(baroque) that the sequence is empty at the start)

END

42 Reusable Components—Reference Manual

DESCRIPTION

L SEQUENCE provides a sequence type variable, the maximum size of which is a machine
parameter. Conventional search and shift functions are provided for the practical use of
this sequence. This answers the frequent problem in programming applications which is
to maintain a list with no blanks.

MACHINE PARAMETERS

L SEQUENCE(LS maxsize,LS VALUE): the variable is a sequence of LS VALUE ele-
ments, with a maximum size that is LS maxsize.

LEN SEQ

syntax nn ← LEN SEQ

outputs 0..LS maxsize

Returns the current size of the sequence.

IS FULL SEQ

syntax bb ← IS FULL SEQ

outputs bb is TRUE if the sequence is full, FALSE if not.

Specifies whether the sequence is full (size = LS maxsize).

IS INDEX SEQ

syntax bb ← IS INDEX SEQ(ii)

preconditions ii must be a NAT.

outputs bb is TRUE if ii is an index in the sequence, FALSE if not.

Specifies whether ii is a valid index.

VAL SEQ

syntax vv ← VAL SEQ(ii)

preconditions ii must be an index in the sequence (ii ∈ 1..size(seq vrb)).

outputs vv is the value of the ii-ith element (vv ∈ VALUE).

Value of an element in the sequence.

FIRST SEQ

syntax vv ← FIRST SEQ

preconditions the sequence must not be empty.

outputs vv is the value of the first element (vv ∈ VALUE).

Returns the first element in the sequence.

LAST SEQ

syntax vv ← LAST SEQ

preconditions the sequence must not be empty.

outputs vv is the value of the last element (vv ∈ VALUE).

Returns the last element in the sequence.

DESCRIPTION OF LIBRARY MACHINES 43

PUSH SEQ

syntax PUSH SEQ(vv)

preconditions vv must be in VALUE and the sequence must not be full.

Add vv at the end of the sequence.

POP SEQ

syntax POP SEQ

preconditions the sequence must not be empty.

Removes the last element from the sequence (its value is lost).

STR SEQ

syntax STR SEQ(ii,vv)

preconditions vv must be in VALUE and ii must be a valid index for the sequence.

Changes the value of an existing element in the sequence.

RMV SEQ

syntax RMV SEQ(ii)

preconditions ii must be a valid index in the sequence.

Removes an element from the middle of the sequence.

INS AFT SEQ

syntax INS AFT SEQ(ii,vv)

preconditions vv must be in VALUE and ii must be a valid index for the sequence. The
sequence must not be full.

Inserts vv right after index ii.

CLR SEQ

syntax CLR SEQ

Clears the sequence.

TAIL SEQ

syntax TAIL SEQ

preconditions the sequence must not be empty.

Removes the first element from the sequence.

KEEP SEQ

syntax KEEP SEQ(nn)

preconditions nn must be a NAT.

Only retains the nn first elements in the sequence. For nn = size(seq vrb), this operation
does not take action.

44 Reusable Components—Reference Manual

CUT SEQ

syntax CUT SEQ(nn)

preconditions nn must be a NAT.

Deletes the nn first elements from the sequence. For nn = size(seq vrb), this operation is
equivalent to CLR SEQ.

PART SEQ

syntax PART SEQ(ii,jj)

preconditions ii and jj must be non null NATs, with ii≤jj.

Only retains the ii..jj portion in the sequence. ii..jj may not be included in the domain of
the sequence.

REV SEQ

syntax REV SEQ

Reverses the order of the elements in the sequence. Applies even for sequences that are
empty or of size 1.

FIND FIRST SEQ

syntax bb,ii ← FIND FIRST SEQ(vv)

preconditions vv must be in VALUE.

outputs bb is TRUE if vv is in the sequence, FALSE if not. ii belongs to the range
1..LS maxsize, if bb = TRUE, then it indicates the first position equal
to vv.

Search for vv in the sequence, starting from the start.

FIND LAST SEQ

syntax bb,ii ← FIND LAST SEQ(vv)

preconditions vv must be in VALUE.

outputs bb is TRUE if vv is in the sequence, FALSE if not. If bb = TRUE, ii
belongs to the range 1..LS maxsize and indicates the last position equal
to vv.

Search for vv in the sequence, starting from the end.

IMPORTS REQUIRED

(instances to import as the implementation tree for this library machine

sees them with SEES) BASIC ARITHMETIC; BASIC BOOL.

WARNING: The implementation of this machine creates the default instance for the
BASIC ARRAY VAR machine (clause IMPORTS BASIC ARRAY VAR(...)). Therefore
if another instance is required, it must be given a non blank instance name (for example:
i1.BASIC ARRAY VAR).

DESCRIPTION OF LIBRARY MACHINES 45

5.7 L SET: Creating a Set

OPERATIONS

CARD SET returns the cardinal for the set.

IS FULL SET identifies whether the set is full (card = LSET maxsize).

FIND SET finds an element in the set.

RMV SET removes an element from the set.

INS SET inserts an element in the set.

CLR SET removes all of the elements from the set.

IS INDEX SET identifies whether a number is a valid index.

VAL SET value of an element in the set.

EXAMPLE

The example below shows the use of L SET on a listed set.

MACHINE
m1

SETS
ST = {cat, dog, bird}

VARIABLES
vv

INVARIANT
vv ⊆ ST

INITIALISATION
vv := {cat,bird}

END

IMPLEMENTATION
m1 1

REFINES
m1

IMPORTS
L SET(3,ST)

INVARIANT
(set vrb is the variable in L SET)
ran (set vrb) = vv

INITIALISATION
(L SET ensures that the set is empty at the start)
INS SET(cat);
INS SET(bird)

END

DESCRIPTION

L SET creates a set that is modeled by an injective sequence type variable, set vrb the
maximum size of which is a machine parameter. It offers functions to search for, add and
delete elements.

The use of an injective sequence type variable enables easy access to each element of the set
via an index. The user can therefore create loops by using the CARD SET and VAL SET
functions. This would not have been possible if the variable directly represented the set.

WARNING: The user must add the gluing invariant ran(set vrb) = var locale to his
machine in order to link his set variable with the L SET machine state.

46 Reusable Components—Reference Manual

MACHINE PARAMETERS

L SET (LSET maxsize, LSET VALUE): the variable is an injective sequence of elements
from LSET VALUE, with a maximum size LSET maxsize.

CARD SET

syntax nn ← CARD SET

output nn is the size of the set (the cardinal of ran (set vrb)). Therefore, nn
belongs to 0.. LSET maxsize

Returns the size of the set.

IS FULL SET

syntax bb ← IS FULL SET

output bb is TRUE if the set is full, FALSE if not.

States whether the set is full (size = LSET maxsize).

IS INDEX SET

syntax bb ← IS INDEX SET(ii)

preconditions ii must be a NAT.

outputs bb is TRUE if ii is an index of the set, FALSE if not.

States whether ii is a valid index.

VAL SET

syntax vv ← VAL SET(ii)

preconditions ii must be an index of the set (ii ∈ 1..size(seq vrb)).

outputs vv is the value of the ii-the element (vv ∈ LSET VALUE).

Value of an element of the set.

FIND SET

syntax bb, ii ← FIND SET(vv)

preconditions vv must be in LSET VALUE.

outputs bb is TRUE if vv is in the set, FALSE if not. ii is a NAT, if bb = TRUE,
then it indicates the position of element vv.

Search for vv in the set.

RMV SET

syntax RMV SET(vv)

preconditions vv must be in the set.

Removes an element from the set.

DESCRIPTION OF LIBRARY MACHINES 47

INS SET

syntax INS SET(vv)

preconditions vv must be in LSET VALUE.

Adds an element to the end of the set, if it is not already in it, if not it does nothing.

CLR SET

syntax CLR SET

Clears the set.

48 Reusable Components—Reference Manual

5.8 L ARRAY1 RANGE: A Range of Arrays of the Same Size,
with Numerical Indexes

OPERATIONS

VAL ARR RGE value of an element (promoted operation).

STR ARR RGE write an element (promoted operation).

COP ARR RGE copy an array to another (promoted operation).

CMP ARR RGE compare two arrays (promoted operation).

DUP ARR RGE duplicate the same array to a series of arrays.

SET ARR RGE copy the same value to an index interval in one of the arrays.

PCOP ARR RGE copy part of one array to a different array, to a given position.

PCMP ARR RGE search for the first element that is different between two parts of
two arrays. A Boolean element indicates whether this element was
found and, in this case, the index of this element in returned.

EXAMPLE

Using SET ARR RGE and DUP ARR RGE to initialize a set of arrays:

MACHINE
m1

VARIABLES
vv

INVARIANT
vv ∈ 0. .20 → (0. .10 → 0. .255)

INITIALISATION
vv := (0. .20)×{(0. .10)×{5}}

END

IMPLEMENTATION
m1 1

REFINES
m1

IMPORTS
i1.L ARRAY1 RANGE(0,20,10,0. .255)

INVARIANT
i1.arr rge = vv

INITIALISATION
i1.SET ARR RGE(0,0,10,5);
i1.DUP ARR RGE (1,20,0)

END

DESCRIPTION

L ARRAY1 RANGE is used in place of BASIC ARRAY RANGE, so that a range of
arrays may create a set of function type abstract variables when operations are required
to perform complete array initialization.

It also allows performing operations that use parts of two different arrays.

The index and range sets are intervals so that it is possible to indicate only portions of
these sets without listing all elements involved.

DESCRIPTION OF LIBRARY MACHINES 49

MACHINE PARAMETERS

L ARRAY1 RANGE (LAUR minrge, LAUR maxrge, LAUR maxidx, LAUR VALUE):
The range interval is the LAUR minrge..LAUR maxrge interval, the index interval is
0..LAUR maxidx and LAUR VALUE is the set of possible values.

VAL ARR RGE

syntax vv ← VAL ARR RGE (range, index)

preconditions range must belong to LAUR minrge..LAUR maxrge and index belong to
0..LAUR maxidx.

outputs vv is a LAUR VALUE, it is the value of the array range at the index
position.

STR ARR RGE

syntax STR ARR RGE (range, index, value)

preconditions range must belong to LAUR minrge..LAUR maxrge, index belong to
0..LAUR maxidx and value belong to LAUR VALUE.

The value data value is stored in the indexed array range.

COP ARR RGE

syntax COP ARR RGE (dest, src)

preconditions dest and src are in LAUR minrge..LAUR maxrge

The src array is copied to the dest array.

CMP ARR RGE

syntax bb ← CMP ARR RGE (range1, range2)

preconditions range1 and range2 are in LAUR minrge..LAUR maxrge

outputs bb is a BOOL element that is TRUE if the two arrays are equal and
FALSE if not.

SET ARR RGE

syntax SET ARR RGE (range,ii,jj,vv)

preconditions range must belong to LAUR minrge..LAUR maxrge, ii..jj be included in
0..LAUR maxidx and vv belong to LAUR VALUE. For implementation
reasons, jj must also be different from MAXINT.

The vv value is stored in the array range for all index values between ii and jj. If ii>jj,
the array remains unchanged.

DUP ARR RGE

syntax DUP ARR RGE (dest1, dest2, src)

preconditions dest1, dest2, src are in LAUR minrge..LAUR maxrge. For implementa-
tion reasons, dest2 must also be different from MAXINT.

The src array is duplicated in all of the arrays of the dest1..dest2 interval.

50 Reusable Components—Reference Manual

PCOP ARR RGE

syntax PCOP ARR RGE (dest, idx dst, src,ii,jj)

preconditions dest and src must be different elements of LAUR minrge..LAUR maxrge,
ii..jj be a non empty interval of 0..LAUR maxidx, idx dst belong to
0..LAUR maxidx, jj be different from MAXINT and idx dst + jj - ii
belong to 0..LAUR maxidx (condition necessary to ensure that the copy
does not overflow).

The ii..jj part of the src array is copied to the dest array, from the idx dst index.

PCMP ARR RGE

syntax idx, bb ← PCMP ARR RGE (rng2,idx2,rng1,ii,jj)

preconditions rng1 and rng2 must belong to LAUR minrge..LAUR maxrge, ii..jj be
a non empty interval of 0..LAUR maxidx, idx2 and idx2 + jj-ii are in
0..LAUR maxidx.

The ii..jj part of array rng1 is compared to the part with the same size in the rng2 array.
The idx2 + jj-ii ∈ 0..LAUR maxidx condition guarantees that this comparison is possible.
bb is a Boolean element that is FALSE if the two parts are equal and TRUE if they are
different. In the latter case, idx and index are the first element that is different from ii..jj.

IMPORTS REQUIRED

(instances to import as the implementation tree for this library machine

sees them with SEES) BASIC ARITHMETIC, BASIC BOOL.

WARNING: The implementation of this machine creates the default instance for the
BASIC ARRAY RANGE machine (IMPORTS BASIC ARRAY RANGE(...) clause).
Therefore if another instance is necessary, it must be given the name of a non empty
instance (for example: i1.BASIC ARRAY RANGE).

DESCRIPTION OF LIBRARY MACHINES 51

5.9 L ARRAY3 RANGE: A Range of Arrays of the Same Size,
with Non Ordered Values, Maximum Operations

OPERATIONS

VAL ARR RGE value of an element (promoted operation).

STR ARR RGE write an element (promoted operation).

COP ARR RGE copy an array to another (promoted operation).

CMP ARR RGE compare two arrays (promoted operation).

DUP ARR RGE duplicate the same array to a set of arrays (promoted operation).

SET ARR RGE copy the same value to an index interval in one of the arrays
(promoted operation).

PCOP ARR RGE copy part of one of the arrays to a different array, at a given
position (promoted operation).

PCMP ARR RGE search for the first element that is different between two parts of
two arrays. A Boolean element indicates whether this element
was found and, in this case, the index of this element is returned
(promoted operation).

SWAP RGE exchange two array elements.

RIGHT SHIFT RGE shift part of an array to the large index.

LEFT SHIFT RGE shift part of an array to the small index.

SEARCH MAX EQL RGE search for the last element that equals a value in part of
an array.

SEARCH MIN EQL RGE search for the first element that equals a value in part of an
array.

REVERSE RGE reverse the order of the elements in part of an array.

EXAMPLE

The following example is a machine that represents the color assigned to 101 dots for each
array in a range; this color may be red, green or blue for each dot. A operation enables
finding a red dot in an array.

52 Reusable Components—Reference Manual

MACHINE
m3

SETS
COLOR = {red,green,blue}

VARIABLES
color

INVARIANT
color ∈ 0. .10 → (0. .100 → COLOR)

INITIALISATION
color:=(0. .10) ×{(0. .100) ×{red}}

OPERATIONS
ii,bb ←− find red(rng) = pre

rng ∈ 0. .10 ∧
rouge ∈ ran(color(rng))

then

ii:∈ color(rng)−1[{red}] ||
bb:∈ BOOL

end

END

IMPLEMENTATION
m3 1

REFINES
m3

IMPORTS
i1.L ARRAY3 RANGE(0,10,100,COLOR)

INVARIANT
i1.arr rge = color

INITIALISATION
il.SET ARR RGE(0,0,100,red);
il.DUP ARR RGE(1,10,0)

OPERATIONS
ii,bb ←− find red(rng) = var bb in

ii,bb ←−
i1.SEARCH MAX EQL RGE(rng,0,100,red)

end

END

DESCRIPTION

L ARRAY3 RANGE is the most complete of the two dimensional array machines with
no constraint3. This makes it possible to create arrays with values that are the elements
of an enumerated set, while retaining access to complete operations such are reversing the
order of elements.

The operation that is not available is the one that would require an order relation on the
elements in the array: sort.

MACHINE PARAMETERS

L ARRAY3 RANGE (LATR minrge, LATR maxrge, LATR maxidx, LATR VALUE):

The range interval is LATR minrge..LATR maxrge, the index interval 0..LATR maxidx
and LATR VALUE is the set of possible values.

VAL ARR RGE

syntax vv ← VAL ARR RGE (range, index)

preconditions range must belong to LATR minrge..LATR maxrge, index belong to
0..LATR maxidx

outputs vv is a LATR VALUE, it is the value of the array range at the index
position.

STR ARR RGE

syntax STR ARR RGE (range, index, value)

preconditions range must belong to LATR minrge..LATR maxrge, index belong to
0..LATR maxidx and value belong to LATR VALUE.

The LATR VALUE value is stored in the array range in the index.

3L ARRAY5 RANGE can only have a finite integer set as range.

DESCRIPTION OF LIBRARY MACHINES 53

COP ARR RGE

syntax COP ARR RGE (dest, src)

preconditions dest and src are in LATR minrge..LATR maxrge

The src array is copied to the dest array.

CMP ARR RGE

syntax bb ← CMP ARR RGE (range1, range2)

preconditions range1 and range2 are in LATR minrge..LATR maxrge

outputs bb is an BOOL that equals TRUE if the two arrays are equal and FALSE
if not.

SET ARR RGE

syntax SET ARR RGE (range,ii,jj,vv)

preconditions range must belong to LATR minrge..LATR maxrge, ii..jj be included in
0..LATR maxidx and vv belong to LATR VALUE. For implementation
reasons, jj must also be different to MAXINT.

Value vv is stored in the array range for all indexes in the range from ii to jj. If ii>jj, the
array remains unchanged.

DUP ARR RGE

syntax DUP ARR RGE (dest1, dest2, src)

preconditions dest1, dest2, src are in LATR minrge..LATR maxrge. For implementa-
tion reasons, dest2 must also be different to MAXINT.

The src array is duplicated in all of the arrays of the dest1..dest2 interval.

PCOP ARR RGE

syntax PCOP ARR RGE (dest, idx dst, src,ii,jj)

preconditions dest and src must belong to LATR minrge..LATR maxrge and be dif-
ferent, ii..jj be a non empty interval of 0..LATR maxidx, idx dst belong
to 0..LATR maxidx, jj be different from MAXINT and idx dst + jj - ii
belong to 0..LATR maxidx (necessary condition to avoid copy overflow).

The ii..jj part in the src array is copied to the dest array, from the idx dst index.

PCMP ARR RGE

syntax idx, bb ←PCMP ARR RGE (rng2,idx2,rng1,ii,jj)

preconditions rng1 and rng2 are in LATR minrge..LATR maxrge, ii..jj is a non empty
interval of 0..LATR maxidx idx2 and idx2 + jj-ii are in 0..LATR maxidx.

The ii..jj part of array rng1 is compared with the part with the same size in array rng2.
The idx2 + jj-ii ∈ 0..LATR maxidx condition guarantees that this comparison is possible.
bb is a Boolean element that is FALSE if the two parts are equal and TRUE if they are
different. In the latter case, idx is the index of the first element that is different to ii..jj.

54 Reusable Components—Reference Manual

SWAP RGE

syntax SWAP RGE (rng,ii,jj)

preconditions rng is in LATR minrge..LATR maxrge, ii and jj in 0..LATR maxidx.

The ii and jj elements in the array are exchanged.

RIGHT SHIFT RGE

syntax RIGHT SHIFT RGE (rng,ii,jj,nn)

preconditions rng must belong to LATR minrge..LATR maxrge, ii, jj and nn belong to
0..LATR maxidx, with ii≤jj and jj+nn≤LATR maxidx to allow a right
shift by nn spaces.

The ii+nn..jj+nn part in the rng array receives a copy of the ii..jj part of this same array
(shift right by nn spaces).

LEFT SHIFT RGE

syntax LEFT SHIFT RGE (rng,ii,jj,nn)

preconditions rng is in LATR minrge..LATR maxrge; ii,jj must be in 0..LATR maxidx,
with ii≤jj. nn must be a NAT with nn ≤ ii to allow the left shift by nn
spaces. For implementation reasons, jj must be equal to MAXINT.

The ii-nn..jj-nn part of the rng array receives a copy of the ii..jj part of this same array
(shift left by nn spaces).

SEARCH MAX EQL RGE

syntax rr,bb ← SEARCH MAX EQL RGE (rng,ii,jj,vv)

preconditions rng must be in LATR minrge..LATR maxrge. ii and jj must be in
0..LATR maxidx, ii≤jj and vv must belong to LATR VALUE.

outputs TRUE if vv was found, FALSE if not. rr is a NAT, if bb = TRUE then
rr is the largest index in the rng array equal to vv.

Search for an element in an array equal to vv, by scanning the ii..jj part starting from jj.

SEARCH MIN EQL RGE

syntax rr,bb ← SEARCH MIN EQL RGE (rng,ii,jj,vv)

preconditions rng must belong to LATR minrge..LATR maxrge, ii and jj belong to
0..LATR maxidx, ii≤jj and vv belong to LATR VALUE.

outputs TRUE if vv was found, FALSE if not. rr is a NAT, if bb = TRUE, then
rr is the smallest index in the rng array equal to vv.

Search for an element in an array that is equal to vv, by scanning the ii..jj part starting
from ii.

REVERSE RGE

syntax REVERSE RGE(rng,ii,jj)

preconditions rng must belong to LATR minrge..LATR maxrge, ii and jj belong to
0..LATR maxidx.

Reversing the order of elements in the ii..jj part of the rng array.

DESCRIPTION OF LIBRARY MACHINES 55

IMPORTS REQUIRED

(instances to import as the implementation tree for this library machine

sees them with SEES) BASIC ARITHMETIC; BASIC BOOL.

WARNING: The implementation of this machine creates the default instance for the
BASIC ARRAY RANGE machine (IMPORTS BASIC ARRAY RANGE(...) clause).
Therefore if another instance is necessary, it must be given a non empty instance name
(for example: i1.BASIC ARRAY RANGE)

56 Reusable Components—Reference Manual

5.10 L ARRAY5 RANGE: Range of Arrays of the Same Size,
with Ordered Value Numerical Indexes, Sort Operation

OPERATIONS

VAL ARR RGE value of an element (promoted operation).

STR ARR RGE write an element (promoted operation).

COP ARR RGE copy an array to another (promoted operation).

CMP ARR RGE compare two arrays (promoted operation).

DUP ARR RGE duplicate the same array to a set of arrays (promoted operation).

SET ARR RGE copy the same value to an index range in one of the arrayx (pro-
moted operation).

PCOP ARR RGE copy part of one of the arrays to a different array, to a given
position (promoted operation).

PCMP ARR RGE search for the first different element between two parts of two ar-
rays. A Boolean element indicates whether this element was found
and, in this case, the index of this element is returned (promoted
operation).

SWAP RGE exchange two elements in an array (promoted operation).

RIGHT SHIFT RGE shift a part of an array to the large index (promoted operation).

LEFT SHIFT RGE shift a part of an array to the small index (promoted operation).

SEARCH MAX EQL RGE search for the last element that is equal to a value in an
array range (promoted operation).

SEARCH MIN EQL RGE search for the fist element that equals a value in an array
range (promoted operation).

REVERSE RGE reverse the order of the elements of a part of an array (promoted
operation).

SEARCH MIN GEQ RGE search for the first element that exceeds a value in an array
range.

ASCENDING SORT RGE sort part of an array and arrange in ascending order.

DESCRIPTION OF LIBRARY MACHINES 57

EXAMPLE

MACHINE
m5

VARIABLES
vv

INVARIANT
vv ∈ 0. .20 → (0. .4 → 0. .255) ∧
∀(xx,yy).(xx ∈ 0. .20 ∧ yy ∈ 0. .3
⇒ vv(yy)(xx)>=vv(yy)(xx+1))

INITIALISATION
vv : (vv ∈ 0. .20 → (0. .4 → 0. .255) ∧
∀(xx,yy).(xx ∈ 0. .20 ∧ yy ∈ 0. .3 ⇒

vv(yy)(xx)>=vv(yy)(xx+1)))
END

IMPLEMENTATION
m5 1

REFINES
m5

IMPORTS
L ARRAY5 RANGE(0,20,4,0,255)

INVARIANT
arr rge = vv

INITIALISATION
SET ARR RGE(0,0,4,50);
STR ARR RGE(0,2,10);
STR ARR RGE(0,4,30);
ASCENDING SORT RGE(0,0,4);
REVERSE RGE(0,0,4);
DUP ARR RGE(1,20,0)

END

DESCRIPTION

L ARRAY5 RANGE is the most complete two dimensional array machines. It especially
contains a sort operation, implanted by a shift sort (fast algorithm).

MACHINE PARAMETERS

L ARRAY5 RANGE (LACR minrge, LACR maxrge, LACR maxidx, LACR minval,
LACR maxval):

LACR minrge..LACR maxrge is the set of ranges, 0..LACR maxidx is the set of indexes
and LACR minval..LACR maxval, the set of possible values. All of the parameters must
be NATs: this machine does not allow negative values.

In addition, LACR minrge ≤ LACR maxrge, 1≤ LACR maxidx and LACR minval ≤
LACR maxval.

VAL ARR RGE

syntax vv ← VAL ARR RGE (range, index)

preconditions range must belong to LACR minrge..LACR maxrge, index belong to
0..LACR maxidx.

outputs vv is a LACR VALUE, it is the value of the array range at the index
position.

STR ARR RGE

syntax STR ARR RGE (range, index, value)

preconditions range must be in LACR minrge..LACR maxrge index must be in 0 ..
LACR maxidx value must belong to LACR VALUE.

The value of the value element is stored in the array range as an index.

58 Reusable Components—Reference Manual

COP ARR RGE

syntax COP ARR RGE (dest, src)

preconditions dest and src are in LACR minrge..LACR maxrge

The src array is copied to the dest array.

CMP ARR RGE

syntax bb ← CMP ARR RGE (range1, range2)

preconditions range1 and range2 are in LACR minrge..LACR maxrge

outputs bb is a BOOL element that is TRUE if the two arrays are equal and
FALSE if not.

SET ARR RGE

syntax SET ARR RGE (range,ii,jj,vv)

preconditions range must belong to LACR minrge..LACR maxrge, ii..jj be included in
0..LACR maxidx and vv belong to LACR VALUE. For implementation
reasons, it is also necessary that jj be different from MAXINT.

The vv value is stored in the array range for all indexes between ii and jj. If ii>jj, the
array remains unchanged.

DUP ARR RGE

syntax DUP ARR RGE (dest1, dest2, src)

preconditions dest1, dest2, src are in LACR minrge..LACR maxrge. For implementa-
tion reasons, it is also necessary for dest2 to be different from MAXINT.

The src array is duplicated to all arrays for the dest1..dest2 range.

PCOP ARR RGE

syntax PCOP ARR RGE (dest, idx dst, src,ii,jj)

preconditions dest and src must be different elements of LACR minrge..LACR maxrge,
ii..jj be a non empty subset of 0..LACR maxidx and idx dst belong to
0..LACR maxidx; jj is different from MAXINT and idx dst + jj - ii belong
to 0..LACR maxidx (condition to avoid copy overflow).

The ii..jj range in the src array is copied to the dest array, for the idx dst index.

PCMP ARR RGE

syntax idx, bb ← PCMP ARR RGE (rng2,idx2,rng1,ii,jj)

preconditions rng1 and rng2 are in LACR minrge..LACR maxrge, ii..jj is a non empty
range 0..LACR maxidx, idx2 and idx2 + jj-ii are in 0..LACR maxidx.

The ii..jj part of the rng1 array is compared with the part of the same size in the rng2
array. The idx2 + jj-ii ∈ 0..LACR maxidx condition guarantees that this comparison is
possible. bb is a Boolean element that is FALSE if the two parts are equal and TRUE if
they are different. In the latter case, idx is the index of the first element that is different
from ii..jj.

DESCRIPTION OF LIBRARY MACHINES 59

SWAP RGE

syntax SWAP RGE (rng,ii,jj)

preconditions rng is in LACR minrge..LACR maxrge, ii and jj in 0..LACR maxidx.

The ii and jj elements in the array are exchanged.

RIGHT SHIFT RGE

syntax RIGHT SHIFT RGE (rng,ii,jj,nn)

preconditions rng must belong to LACR minrge..LACR maxrge. ii, jj and nn belong
to 0..LACR maxidx, with ii≤jj and jj+nn≤LACR maxidx to allow the
shift right by nn spaces.

The ii+nn..jj+nn part of the rng array receives a copy of the ii..jj part from this same
array (shift nn spaces to the right).

LEFT SHIFT RGE

syntax LEFT SHIFT RGE (rng,ii,jj,nn)

preconditions rng must belong to LACR minrge..LACR maxrge, ii and jj belong to
0..LACR maxidx, with ii≤jj. nn must belong to NAT with nn ≤ ii to
make possible the left shift by nn spaces. For implementation reasons, jj
cannot equal MAXINT.

The ii-nn..jj-nn part of the rng array receives a copy of the ii..jj part of this same array
(shift nn spaces to the left).

SEARCH MAX EQL RGE

syntax rr,bb ← SEARCH MAX EQL RGE (rng,ii,jj,vv)

preconditions rng must belong to LACR minrge..LACR maxrge. ii and jj belong to
0..LACR maxidx, ii≤jj and vv must belong to LACR VALUE.

outputs TRUE if vv was found, FALSE if not. rr is a NAT, if bb = TRUE then
rr the largest index in the array that equals vv.

Search for an array element that equals vv, by scanning the ii..jj part starting from jj.

SEARCH MIN EQL RGE

syntax rr,bb ← SEARCH MIN EQL RGE (rng,ii,jj,vv)

preconditions rng must belong to LACR minrge..LACR maxrge, ii and jj belong to
0..LACR maxidx, ii≤jj and vv must belong to VALUE.

outputs TRUE if vv was found, FALSE if not. rr is a NAT, if bb = TRUE, then
rr is the smallest index in the rng array equal to vv.

Search for an element in an array equal to vv, by scanning the ii..jj part starting from ii.

REVERSE RGE

syntax REVERSE RGE(rng,ii,jj)

preconditions rng must belong to LACR minrge..LACR maxrge, ii and jj belong to
0..LACR maxidx.

Reverse the order of elements in the ii..jj range of the rng array.

60 Reusable Components—Reference Manual

SEARCH MIN GEQ RGE

syntax ii,bb ← SEARCH MIN GEQ RGE(rng,jj,kk,vv)

preconditions rng must belong to LACR minrge..LACR maxrge. jj and kk belong to
0..LACR maxidx, jj≤kk and vv belong to LACR minval..LACR maxval.
For implementation reasons, kk must be different from MAXINT.

outputs bb is a Boolean element, TRUE is an element that exceeds or is equal to
the vv value found, FALSE if not. ii is a NAT, if bb = TRUE, then ii is
the smallest index in the image array that exceeds or is equal to vv.

Search for an element that exceeds or is equal to vv in the jj..kk range, starting from jj.

ASCENDING SORT RGE

syntax ASCENDING SORT RGE (rng,ii,jj)

preconditions rng must belong to LACR minrge..LACR maxrge, ii and jj belong to
0..LACR maxidx. For implementation reasons, ii and jj must not be
different from MAXINT.

Shift sort, in ascending order (starting with the smallest) on the ii..jj range in an array.

IMPORTS REQUIRED

(instances to import as the implementation tree for this library machine

sees them with SEES)

BASIC ARITHMETIC; BASIC BOOL.

WARNING: The implementation of this machine creates the default instance for the
BASIC ARRAY RANGE machine (IMPORTS BASIC ARRAY RANGE(...) clause).
Therefore if another instance is necessary, it must be given a non empty instance name
(for example: i1.BASIC ARRAY RANGE)

DESCRIPTION OF LIBRARY MACHINES 61

5.11 L SEQUENCE RANGE: Range of Sequences

OPERATIONS

LEN SEQ RGE gives the size of a sequence.

IS FULL SEQ RGE indicates whether a sequence is full.

IS INDEX SEQ RGE indicates whether an integer is in the sequence domain.

VAL SEQ RGE gives the value of a sequence for a valid index.

FIRST SEQ RGE gives the first element of a sequence.

LAST SEQ RGE gives the last element of a sequence.

PUSH SEQ RGE adds an element to a sequence.

POP SEQ RGE removes the last element from a sequence.

STR SEQ RGE changes the value of an element in a sequence.

RMV SEQ RGE removes an element from a sequence, the size of which is reduced
by 1.

INS SEQ RGE adds an element to a sequence, the size of which increases by 1.

CLR SEQ RGE empties a sequence.

TAIL SEQ RGE removes the first element from a sequence.

KEEP SEQ RGE only retains the first N in a sequence elements.

CUT SEQ RGE cuts the N first elements from a sequence.

PART SEQ RGE only retains in a sequence the indexes between the two limit values.

REV SEQ RGE reverses the order of the elements in a sequence.

FIND FIRST SEQ RGE searches for a value in a sequence, returns a Boolean element
indicating whether it was found, and if yes, returns the smallest
corresponding index.

FIND LAST SEQ RGE searches for a value in a sequence, returns a Boolean element
indicating whether it was found and if yes, returns the largest
corresponding index.

COP SEQ RGE copies one of the sequences to another.

CMP SEQ RGE compares two sequences.

PCOP SEQ RGE partial copy from one sequence to another.

PCMP SEQ RGE partial comparison of two sequences.

62 Reusable Components—Reference Manual

EXAMPLE

The example below shows the use of L SEQUENCE RANGE on a numbered set.

MACHINE
sr

SETS
ST = {classical,baroque,rock,rap,funk}

VARIABLES
vv

INVARIANT
vv ∈ 1. .5 → seq(ST) ∧
∀rr.(rr ∈ 1. .5 ⇒ size(vv(rr)) ≤ 10)

INITIALISATION
vv:=(1. .5) ×{[baroque,rock,rap]}

OPERATIONS
ii,bb ←− trouve rap(rng) = pre

rng ∈ 1. .5
then

ii:∈ vv(rng)−1[{rap}] ||
bb:∈ BOOL

end

END

IMPLEMENTATION
sr 1

REFINES
sr

IMPORTS
s1.L SEQUENCE RANGE(1,5,10,ST)

INVARIANT
s1.seq rge = vv

INITIALISATION
s1.CLR SEQ RGE(1);
s1.PUSH SEQ RGE(1,baroque);
s1.PUSH SEQ RGE(1,rock);
s1.PUSH SEQ RGE(1,rap);
s1.COP SEQ RGE(2,1);
s1.COP SEQ RGE(3,1);
s1.COP SEQ RGE(4,1);
s1.COP SEQ RGE(5,1)

OPERATIONS
ii,bb ←− trouve rap(rng) = begin

bb,ii ←− s1.FIND FIRST SEQ RGE(rng,rap)
end

END

DESCRIPTION

L SEQUENCE RANGE enables implementing and using a set number of sequences with a
fixed maximum size. The sequence number evolves in a range that is a machine parameter,
the maximum size of all of the sequences is also a machine parameter. The purpose is
to be able to make comparisons and copies between these sequences directly, using an
additional operation to the traditional operations on each of the sequences.

MACHINE PARAMETERS

L SEQUENCE RANGE (LSR minrge, LSR maxrge, LSR maxsize, LSR VALUE): the
variable is a total function of LSR minrge..LSR maxrge in the set of VALUE sequences
with a maximum size of LSR maxisize.

LEN SEQ RGE

syntax nn ← LEN SEQ RGE (range)

preconditions range must belong to the LSR minrge..LSR maxrge range.

outputs nn is the size of the range position , nn ∈ 0..LSR maxsize.

Gives the size of a sequence.

DESCRIPTION OF LIBRARY MACHINES 63

IS FULL SEQ RGE

syntax bb ← IS FULL SEQ RGE (range)

preconditions range must belong to the range LSR minrge..LSR maxrge.

outputs bb is TRUE if the range position sequence is full, FALSE if not.

Indicates whether a sequence is full.

IS INDEX SEQ RGE

syntax bb ← IS INDEX SEQ RGE (range, ii)

preconditions range must belong to the LSR minrge..LSR maxrge range, ii must be a
NAT.

outputs bb is TRUE if ii is an index in the range position sequence, FALSE if not.

Identifies whether an integer is in a sequence domain.

VAL SEQ RGE

syntax vv ← VAL SEQ RGE (range, ii)

preconditions range must belong to the LSR minrge..LSR maxrge range, ii must be an
index in the range position sequence (ii ∈ 1..size (seq rge (range))).

outputs vv is the value of the ii-th element in the range position sequence (vv ∈
VALUE).

Gives the value of a sequence for a valid index.

FIRST SEQ RGE

syntax vv ← FIRST SEQ RGE (range)

preconditions range must belong to the LSR minrge..LSR maxrge range, the range
position sequence must not be empty.

outputs vv is the value of the first element in the range position sequence (vv ∈
VALUE).

Gives the first element in a sequence.

LAST SEQ RGE

syntax vv ← LAST SEQ RGE (range)

preconditions range must be in the LSR minrge..LSR maxrge range, the range position
sequence must not be empty.

outputs vv is the value of the last element in the range position sequence (vv ∈
VALUE).

Gives the last element of a sequence.

PUSH SEQ RGE

syntax PUSH SEQ RGE (range, vv)

preconditions range must belong to the LSR minrge..LSR maxrge range, vv must be
in LSR VALUE and the range position sequence cannot be full.

Adds an element to a sequence.

64 Reusable Components—Reference Manual

POP SEQ RGE

syntax POP SEQ RGE (range)

preconditions range must belong to the LSR minrge..LSR maxrge range, the range
position sequence must not be empty.

Removes the last element in a sequence.

STR SEQ RGE

syntax STR SEQ RGE (range, ii, vv)

preconditions range must belong to LSR minrge..LSR maxrge, ii be a valid index in
the range position sequence and vv belong to LSR VALUE.

Change the value of an element in a sequence.

RMV SEQ RGE

syntax RMV SEQ RGE (range, ii)

preconditions range must belong to the LSR minrge..LSR maxrge range, ii must be a
valid index in the range sequence.

Removes an element from a sequence, the size of which decreases by 1.

INS AFT SEQ RGE

syntax INS AFT SEQ RGE (range, ii, vv)

preconditions range must belong to the LSR minrge..LSR maxrge range, ii must be a
valid index in the range position sequence, vv must be in LSR VALUE,
the range position sequence must not be full.

Adds an element to a sequence, the size of which increases by 1.

CLR SEQ RANGE

syntax CLR SEQ RANGE (range)

preconditions range must belong to the LSR minrge..LSR maxrge range.

Clears a sequence.

TAIL SEQ RGE

syntax TAIL SEQ RGE (range)

preconditions range must belong to the LSR minrge..LSR maxrge range and the range
position sequence cannot be empty.

Removes the first element in a sequence.

KEEP SEQ RGE

syntax KEEP SEQ RGE (range, nn)

preconditions range must belong to the LSR minrge..LSR maxrge range, nn must be a
NAT.

Only retains the nn first elements in a sequence. For nn = size (seq rge(range)); this
operation has no effect.

DESCRIPTION OF LIBRARY MACHINES 65

CUT SEQ RGE

syntax CUT SEQ RGE (range, nn)

preconditions range must belong to the LSR minrge..LSR maxrge range, nn must be
in NAT.

Clears the sequence of its first nn elements. For nn = size(seq rge(range)), this operation
is equivalent to CLR SEQ RGE.

PART SEQ RGE

syntax PART SEQ RGE (range, ii, jj)

preconditions range must belong to the LSR minrge..LSR maxrge range, ii and jj must
be NATs that are not null, with ii ≤ jj.

In a sequence, only retains the indexes between two limits. ii..jj may not be in the sequence
domain.

REV SEQ RGE

syntax REV SEQ RGE (range)

preconditions range must belong to the LSR minrge..LSR maxrge range.

Reverses the order of the elements in a sequence.

FIND FIRST SEQ RGE

syntax bb, ii ← FIND FIRST SEQ RGE (range, vv)

preconditions range must belong t the LSR minrge..LSR maxrge range, vv must be in
LSR VALUE.

outputs bb is TRUE if vv is in the range position sequence, FALSE if not. ii is a
NAT, if bb = TRUE, it indicates the first position that equals vv in the
sequence.

Searches for a value in a sequence starting from the beginning.

FIND LAST SEQ RGE

syntax bb, ii ← FIND LAST SEQ RGE (range, vv)

preconditions range must belong to the LSR minrge..LSR maxrge range, vv must be
in LSR VALUE.

outputs bb is TRUE if vv is in the range position sequence, FALSE if not. ii is
a NAT; if bb = TRUE, this indicates the last position that equals vv in
the sequence.

Searches for a value in a sequence, starting from the end.

COP SEQ RGE

syntax COP SEQ RGE (dst, src)

preconditions dst and src must belong to the LSR minrge..LSR maxrge range.

Copy the seq rge(src) sequence to the seq rge(dst) sequence.

66 Reusable Components—Reference Manual

CMP SEQ RGE

syntax bb ← CMP SEQ RGE (rng1, rng2)

preconditions rng1 and rng2 must belong to the LSR minrge..LSR maxrge range.

outputs bb is TRUE if the two rng1 and rng2 position sequences are equal, FALSE
if not.

Compare two sequences.

PCOP SEQ RGE

syntax PCOP SEQ RGE (dst, idx, src, ii, jj)

preconditions dst and src must belong to the LSR minrge..LSR maxrge range, dst must
be different from src, ii and jj must be valid indexes in the src position
sequence, with ii ≤ jj and jj ≤ MAXINT-1 idx must be a valid index
for the dst sequence or where the size of this sequence +1, idx + jj - ii
belongs to the 1..LSR maxsize range.

Copy the ii..jj part of the src position sequence to the dst position from the idx index.

PCMP SEQ RGE

syntax idx, bb ← PCMP SEQ RGE (rng1, ii, jj, rng2, kk)

preconditions rng1 and rng2 must be in the LSR minrge..LSR maxrge range, ii and jj
must be valid indexes in the rng1 and ii ≤ jj position sequences, kk must
be a valid index in the rng2 position sequence, (kk + jj - ii) must be a
valid index in the rng2 position sequence.

output bb is TRUE if there is an element of the ii..jj part in the seq rge (rng1)
sequence that is different to the kk.. (kk + jj - ii) part of the seq rge
(rng2) sequence, FALSE if not. idx is a NAT if bb is TRUE, the idx
represents the index of the first element that is different in the seq rge
(rng1 ∈ ii..jj) sequence.

Partial comparison of two sequences.

IMPORTS REQUIRED

(instances to import as the implementation tree for this library machine

sees them with SEES)

BASIC ARITHMETIC ;

BASIC BOOL.

WARNING: The implementation of this machine creates the default instance for the
BASIC ARRAY RANGE and BASIC ARRAY VAR machines. Therefore, if other in-
stances are required they must be given a name that is not blank.

(example: i1.BASIC ARRAY RANGE).

DESCRIPTION OF LIBRARY MACHINES 67

5.12 L ARRAY COLLECTION: collection of arrays of the same
size

OPERATIONS

CRE ARR COL returns a Boolean element that indicates that there remains an
array available in the collection and gives the index of this available
array.

DEL ARR COL releases the specified array.

VAL ARR COL read an element from one of the valid arrays.

STR ARR-COL write an element from one of the valid arrays.

COP ARR COL copy one of the arrays to another.

CMP ARR COL compare two arrays.

EXAMPLE

MACHINE
m1

OPERATIONS
ii1,ii2 ←− initialise arrayx(vv) = pre

vv ∈ 1. .10
then

ii1:∈ NAT ||
ii2:∈ NAT

end

END

IMPLEMENTATION
M1 1

REFINES
M1

IMPORTS
L ARRAY COLLECTION(4,1. .10,1. .10)

OPERATIONS
ii1,ii2 ←− initialise arrayx(vv) = begin

var b1,b2 in

ii1,b1 ←− CRE ARR COL;
ii2,b2 ←− CRE ARR COL;
STR ARR COL(ii1,1,vv);
COP ARR COL(ii2,ii1)

end

end

END

DESCRIPTION

L ARRAY COLLECTION is used to handle identically sized one dimensional arrays.

It contains basic operations (create, delete, read, write, compare).

MACHINE PARAMETERS

L ARRAY COLLECTION (LACOLL maxobj, LACOLL INDEX, LACOLL VALUE):
LACOLL maxobj is the maximum number of arrays in the collection. LACOLL INDEX
is the set of array indexes, LACOLL VALUE is the set of possible values of array elements.

68 Reusable Components—Reference Manual

CRE ARR COL

Syntax ii, bb ← CRE ARR COL

Outputs bb is a Boolean element indicating whether any available arrays are left
in the collection, ii is the index of this available array.

Assigning an array in the collection.

DER ARR COL

Syntax DEL ARR COL (ii)

Preconditions ii must belong to 1..LACOLL maxobj

The array of index ii in the collection is released. It may once again be assigned using
CRE ARR COL.

VAL ARR COL

Syntax vv ← VAL ARR COL (ii, jj)

Preconditions ii must belong to 1..LACOLL maxobj and jj belong to LACOLL INDEX.

Output vv contains the jj number value of array ii.

Use vv to store the value of number jj in array ii.

STR ARR COL

Syntax STR ARR COL (ii, jj, vv)

Preconditions ii must belong to 1..LACOLL maxobj, jj belong to LACOLL INDEX
and vv belong to LACOLL VALUE.

Write the value of vv to cell number jj in array ii.

COP ARR COL

Syntax COP ARR COL (dest, src)

Preconditions dest and src must belong to 1..LACOLL maxobj.

Copy the contents of the src array to the dest array.

CMP ARR COL

Syntax bb ← CMP ARR COL (range 1, range 2)

Preconditions range 1 and range 2 must belong to 1..LACOLL maxobj.

Output bb is a Boolean element indicating whether array range 1 and range 2 are
identical.

Comparison between the two 2 arrays.

IMPORTS REQUIRED

(instances to import as the implementation tree for this library machine

sees them with SEES).

BASIC ARITHMETIC BASIC BOOL

DESCRIPTION OF LIBRARY MACHINES 69

5.13 L ARRAY1 COLLECTION: array of the same size, with nu-
merical indexes

OPERATIONS

CRE ARR COL returns a Boolean element indicating whether an array remains
available in the collection and the index of this available array
(promoted operation).

DEL ARR COL releases the array mentioned (promoted operation).

VAL ARR COL read an element from one of the valid arrays (promoted operation).

STR ARR-COL write an element from one of the valid arrays (promoted opera-
tion).

COP ARR COL copy one of the arrays to another (promoted operation).

CMP ARR COL compare two arrays (promoted operation).

SET ARR-COL copy the same value to an index range in one of the arrays.

PCOP ARR COL copy part of one of the arrays to another in a given position.

PCMP ARR COL search for the first different element between two parts of two
different arrays. A Boolean element indicates whether the element
was found and in this case, the index of this element is returned.

EXAMPLE

Using SET ARR COL to fill-in two arrays and PCOP ARR COL to define a third one.
Note the need to test the Boolean output elements from CRE ARR COL in order to use
the arrays created.

The example is as follows:

MACHINE
M1

OPERATIONS
op = skip

END

70 Reusable Components—Reference Manual

IMPLEMENTATION
M1 1

REFINES
M1

IMPORTS
L ARRAY1 COLLECTION(3,3,1,10)

OPERATIONS
op = var i1,i2,i3,b1,b2,b3 in

i1,b1 ←− CRE ARR COL;
i2,b2 ←− CRE ARR COL;
i3,b3 ←− CRE ARR COL;
if b1 = TRUE ∧

b2 = TRUE ∧
b3 = TRUE

then

SET ARR COL(i1,0,3,1);
SET ARR COL(i2,0,3,2);
PCOP ARR COL(i3,0,i1,0,1);
PCOP ARR COL(i3,2,i2,2,3)

end

end

END

DESCRIPTION

L ARRAY1 COLLECTION enables the use of a collection of arrays without the need to
code loops to position a set of elements or arrays. This was not possible with the previous
machine L ARRAY COLLECTION where index sets are normally unordered.

MACHINE PARAMETERS

L ARRAY1 COLLECTION (LAUC maxobj, LAUC maxidx, LAUC minval,
LAUC maxval): The variable is a partial function of 1..LAUC maxobj in the set of to-
tal functions of 0..LAUC maxidx to LAUC minval..LAUC maxval. LAUC maxobj is a
NAT1 that is different from MAXINT. LAUC maxidx, LAUC minval and LAUC maxval
are NATs and LAUC minval ≤LAUC maxval.

CRE ARR COL

Syntax ii, bb ← CRE ARR COL

Outputs bb is a Boolean element indicating whether any available arrays remain
in the collection, ii is the index of this available array.

Allocate an array in the collection.

DEL ARR COL

Syntax DEL ARR COL (ii)

Preconditions ii must belong to 1..LAUC maxobj

Array ii in the collection is released. It may once again be assigned using CRE ARR COL.

DESCRIPTION OF LIBRARY MACHINES 71

VAL ARR COL

Syntax vv ← VAL ARR COL (ii, jj)

Preconditions ii must belong to 1..LAUC maxobj jj must belong to 1..LAUC maxidx.

Output vv contains the value of number jj in array ii.

Store in vv the value of number jj in array ii.

STR ARR COL

Syntax STR ARR COL (ii, jj, vv)

Preconditions ii must belong to 1..LAUC maxobj; jj must belong to 1..LAUC maxidx.
vv must belong to LAUC VALUE.

Write value vv to the jjth cell in array ii.

COP ARR COL

Syntax COP ARR COL (dest, src)

Preconditions dest and src must belong to 1..LAUC maxobj.

Copy the contents of the src array to the dest array.

CMP ARR COL

Syntax bb ← CMP ARR COL (range 1, range 2)

Preconditions range 1 and range 2 must belong to 1..LAUC maxobj.

Output bb is a Boolean element that indicates whether array ranges 1 and 2 are
identical.

Comparison between the two arrays.

SET ARR COL

Syntax SET ARR COL (range, ii, jj, vv)

Preconditions range belonging to dom(arr col), i.e. it corresponds to the index of a
previously created array. ii and jj are in 1..LAUC maxidx, jj must be
different from MAXINT. vv is in LAUC minval..LAUC maxval.

The value vv is copied to the range array for all indexes between ii and jj. If ii > jj, the
array remains unchanged.

PCOP ARR COL

Syntax PCOP ARR COL (dest, idx dst, src, ii, jj)

Preconditions dest and src are elements that are different from 1..LAUC maxobj, cor-
responding to arrays already created. ii..jj is a non blank interval of
0..LAUC maxidx and jj /= MAXINT. idx dst..idx dst + jj - ii is an
interval of 0..LAUC maxidx.

The ii..jj part in the src array is copied to the idx dst..idx dst + jj - ii part of the dst
array.

72 Reusable Components—Reference Manual

PCMP ARR COL

Syntax idx, bb ← PCMP ARR COL (nn2, idx2, nn1, ii, jj)

Preconditions nn1 and nn2 are elements that are different from 1..LAUC maxobj and
correspond to arrays already created. ii..jj is a non blank interval of
0..LAUC maxidx. idx2..idx2 + jj - ii is an interval of 0..LAUC maxidx.

Outputs bb is a BOOL. idx is in ii..jj.

The ii..jj part in array nn1 is compared to part idx2..idx2 + jj - ii in array nn2. bb is
FALSE if the two parts are identical, TRUE if not. In this case, idx is the index of the
first element that is different from ii..jj.

IMPORTS REQUIRED

(instances to import as the implementation tree for this library machine

sees them with SEES) BASIC ARITHMETIC, BASIC BOOL.

	Introduction
	Index of Basic Machines
	Index of Library Machines
	Description of Basic Machines
	Description of Library Machines

