
Constraint Programming (course 1DL440)

Uppsala University – Autumn 2013

Exam

Prepared by Pierre Flener

— Deadline: 13:00 on Friday 20 December 2013 —

Materials: This is a closed -book exam. Electronic devices are disallowed.
Grading: Your grade is as follows, when your mark is x out of 75 points:

Swedish Grade Condition

5 64 ≤ x ≤ 75
4 51 ≤ x ≤ 63
3 38 ≤ x ≤ 50
U 00 ≤ x ≤ 37

Help: Normally, an instructor will attend this exam from 10:00 to 11:00.
Answers: Your answers must be written in English. Provide only the
requested information and nothing else. Unreadable, unintelligible, and
irrelevant answers will not be considered. Be concise and write each answer
immediately behind its question and attach extra solution pages only
where permitted : if an answer does not fit into the provided space, then
it is unnecessarily long and maybe you should re-read the question. Always
show all the details of your reasoning (unless explicitly not requested), and
make explicit all your assumptions. This question set is double-sided. Do
not write anything into the following table:

Question Max Points Your Mark

1 27

2 17

3 31

Total 75

Identity: Your anonymous exam code (or name and personal number if you have none):

. .

Question 1: Consistency, Propagation, and Search (27 points)

Consider the following named constraints for decision variables over the domain {1, . . . , 9}:

Element([2, 1, 8, 2, 1, 0] , v, x) (c)

v + x ≤ 7 (d)

w · w ≤ 5 (e)

Distinct({v, w, x}) (f)

Perform (only on this page and the next two pages) the following sequence of tasks:

A. Using the Propagate fixpoint algorithm seen in the course, namely the version with propag-
ator conditions and status messages (but without the set ModVars of decision variables
whose domains have been modified), perform the pre-search propagation to compute the
root of the search tree. The following propagation choices are imposed:

• Use idempotent propagators achieving bounds(D) consistency for the arithmetic
constraints and domain consistency for the other constraints.

• Post the constraints in the textual order in which they appear above.

• Handle the decision variables in the textual order in which they appear in the stores.

• Use a first-in first-out queue (FIFO) for implementing the set Q of propagators
that are not known to be at fixpoint. (Note that Q is not a multi-set.)

In other words, upon denoting the propagator of constraint γ also by γ, perform the
following sequence of sub-tasks:

(a) For each constraint γ, give (only in the lines after this paragraph , and without
proof) the set PropConds(γ) of conditions that should trigger the scheduling of the
propagator of γ, as a strictly stronger store might then be obtained. Each propagator
condition is of the form ‘Any(α)’, ‘Fixed(α)’, or ‘Bounded(α)’, where α is a decision
variable of γ. Write ‘(none)’ rather than nothing, where appropriate. (5 points)

PropConds(c) = { }

PropConds(d) = { }

PropConds(e) = { }

PropConds(f) = { }
(b) Fill in the table on the next page for the initialisation (in the first row) and every

pre-search iteration of Propagate. Each status message is as precise as possible, the
options being ‘Subsumed’, ‘AtFixpt’, ‘Unknown’ (short for “not known to be at fix-
point”), and ‘Failed’. Each modification event is of the form ‘None(α)’, ‘Failed(α)’,
‘Fixed(α)’, ‘Bounded(α)’, or ‘Any(α)’, where α is a decision variable of the propag-
ated constraint. Write ‘(none)’ rather than nothing, where appropriate. The array
argument of the Element constraint is indexed from 1, not from 0. (12 points)

(c) Indicate (below) what changes in your answers to the previous sub-tasks when in-
stead achieving domain consistency for all the constraints. Why? (Note that you
are not asked to fill in another table.) (3 points)

E
l
e
m
e
n
t

(1
2

3
4

5
6

2
1

8
2

1
0
,v
,x

) (c
),

v
+
x
≤

7
(d

),
w
·w
≤

5
(e

),
D
is
t
in
c
t

({
v
,w

,x
})

(f
)

C
h
os

en
S
ta

tu
s

M
o
d
ifi

ca
ti

on
D

ep
en

d
en

t
N

on
-s

u
b
su

m
ed

F
IF

O
q
u
eu

e
Q

p
ro

p
.

R
es

u
lt

in
g

st
or

e
m

es
sa

ge
ev

en
ts

p
ro

p
.s
D
ep
P
ro
ps

p
ro

p
ag

at
or

s
R

of
p
ro

p
ag

at
or

s
(n

on
e)

v
7→
{

},
w
7→
{

},
x
7→
{

}
(n

on
e)

(n
on

e)
(n

on
e)

{
}

[
]

v
7→
{

},
w
7→
{

},
x
7→
{

}
{

}
{

}
[

]
v
7→
{

},
w
7→
{

},
x
7→
{

}
{

}
{

}
[

]
v
7→
{

},
w
7→
{

},
x
7→
{

}
{

}
{

}
[

]
v
7→
{

},
w
7→
{

},
x
7→
{

}
{

}
{

}
[

]
v
7→
{

},
w
7→
{

},
x
7→
{

}
{

}
{

}
[

]
v
7→
{

},
w
7→
{

},
x
7→
{

}
{

}
{

}
[

]
v
7→
{

},
w
7→
{

},
x
7→
{

}
{

}
{

}
[

]
v
7→
{

},
w
7→
{

},
x
7→
{

}
{

}
{

}
[

]
v
7→
{

},
w
7→
{

},
x
7→
{

}
{

}
{

}
[

]
v
7→
{

},
w
7→
{

},
x
7→
{

}
{

}
{

}
[

]
v
7→
{

},
w
7→
{

},
x
7→
{

}
{

}
{

}
[

]
v
7→
{

},
w
7→
{

},
x
7→
{

}
{

}
{

}
[

]
v
7→
{

},
w
7→
{

},
x
7→
{

}
{

}
{

}
[

]
v
7→
{

},
w
7→
{

},
x
7→
{

}
{

}
{

}
[

]
v
7→
{

},
w
7→
{

},
x
7→
{

}
{

}
{

}
[

]
v
7→
{

},
w
7→
{

},
x
7→
{

}
{

}
{

}
[

]
v
7→
{

},
w
7→
{

},
x
7→
{

}
{

}
{

}
[

]
v
7→
{

},
w
7→
{

},
x
7→
{

}
{

}
{

}
[

]
v
7→
{

},
w
7→
{

},
x
7→
{

}
{

}
{

}
[

]
v
7→
{

},
w
7→
{

},
x
7→
{

}
{

}
{

}
[

]
v
7→
{

},
w
7→
{

},
x
7→
{

}
{

}
{

}
[

]
v
7→
{

},
w
7→
{

},
x
7→
{

}
{

}
{

}
[

]
v
7→
{

},
w
7→
{

},
x
7→
{

}
{

}
{

}
[

]
v
7→
{

},
w
7→
{

},
x
7→
{

}
{

}
{

}
[

]
v
7→
{

},
w
7→
{

},
x
7→
{

}
{

}
{

}
[

]
v
7→
{

},
w
7→
{

},
x
7→
{

}
{

}
{

}
[

]
v
7→
{

},
w
7→
{

},
x
7→
{

}
{

}
{

}
[

]
v
7→
{

},
w
7→
{

},
x
7→
{

}
{

}
{

}
[

]
v
7→
{

},
w
7→
{

},
x
7→
{

}
{

}
{

}
[

]
v
7→
{

},
w
7→
{

},
x
7→
{

}
{

}
{

}
[

]

B. If the pre-search propagation of sub-task A.b has not solved the problem, then draw
(below) the search tree with all the solutions, with pairs of non-subsumed propagator
sets and constraint stores as nodes, and decisions (which are constraints) as labelled arcs.
The choices of task A and the following branching heuristics are imposed:

• Use largest-minimum variable selection (called INT VAR MAX MIN in Gecode).

• Use bottom-up value selection (called INT VAL MIN in Gecode).

Continue to use the table on the previous page when propagating a branching decision
or a constraint, and mark there the starting row of each call to Propagate. (7 points)

〈
{ } ,

v 7→ { } ,
w 7→ { } ,
x 7→ { }

〉

〈
{ } ,

v 7→ { } ,
w 7→ { } ,
x 7→ { }

〉

.

〈
{ } ,

v 7→ { } ,
w 7→ { } ,
x 7→ { }

〉

.

The exam continues on the next page!

Question 2: Global Constraints (17 points)

Consider the finite automaton A below. It describes the language L of words over the alphabet
Σ = {c, u} where symbol ‘c’ occurs 2 or 3 consecutive times each time it appears, and symbol
‘u’ occurs exactly 2 consecutive times each time it appears. For instance, “ccuuccc” ∈ L, but
“cuu” 6∈ L. The start state ε is marked by a transition entering from nowhere; the accepting
states ε, c2, c3, and u2 are marked by double circles; the non-accepting states are marked by
single circles. Missing transitions, say from state c1 upon reading symbol ‘u’, are assumed to
go to an implicit non-accepting state, with a self-loop transition for every symbol of the al-
phabet, so that no accepting state is reachable from that state. For a sequence X of decision
variables over Σ, the automaton A can be used to model as Regular(X,A) the described con-
straint Stretch(X, [c, u] , [2, 2] , [3, 2]), where [2, 2] (respectively [3, 2]) contains the minimum
(respectively maximum) lengths of stretches in X of the corresponding symbols in [c, u].

ε

c1

c2

c3u1

u2

c c

cu

u

uu

c

Let us propagate to domain consistency the constraint Regular([x1, x2, x3, x4, x5] , A), start-
ing from the store {x1, x2, x3, x4, x5 7→ Σ}. Perform the following sequence of tasks:

A. Perform (on an attached separate page) the forward phase of constructing the layered
graph needed by this propagator. (4 points)

B. Perform (on the same separate page, using another colour) the backward phase
(without minimisation) of constructing the layered graph. (4 points)

C. Calculate (below), using the layered graph, all the solutions to this constraint. (2 points)

D. Indicate (below) the constraint store and status message after the pruning phase: (2 points)

{x1 7→ { } , x2 7→ { } , x3 7→ { } , x4 7→ { } , x5 7→ { }}

E. Explain (below) how one makes this propagator incremental: (2 points)

F. Continuing from your store of task D, perform (on the same separate page, using
yet another colour) what happens when branching or the propagator of some other
constraint gives x4 6= u and thus eventually wakes up the Regular propagator. Also
indicate (below) the resulting constraint store and status message: (3 points)

{x1 7→ { } , x2 7→ { } , x3 7→ { } , x4 7→ { } , x5 7→ { }}

Question 3: Modelling (31 points)

Consider the nurse scheduling problem (NSP) for hospitals. Given N nurses and a schedul-
ing horizon of D days, the objective is to assign a shift to each nurse on each day. The possible
shifts are ‘m’ (morning), ‘a’ (afternoon), ‘e’ (evening), and ‘o’ (off-duty). Let S = {m, a, e, o}.
The hospital constraints and the nurse labour union constraints are:

(coverage) For each day d and shift s: there are at least Coverage[d, s] assigned nurses.

(work) For each nurse n and shift s: there are at least Occur [min, s] and at most Occur [max, s]
assignments of n to s across the D days.

(stretch) For each nurse n and shift s: if n is assigned to s, then there are at least Stretch[min, s]
and at most Stretch[max, s] consecutive such assignments across the D days.

For instance, for D = 7 days and N = 25 nurses, the mentioned matrix parameters could be:

Coverage m a e o

day 1 3 3 2 0
day 2 0 1 2 0
day 3 3 3 1 0
day 4 2 1 1 0
day 5 3 2 1 0
day 6 0 1 2 0
day 7 2 1 1 0

Occur m a e o

min 0 0 0 1
max 6 6 3 5

Stretch m a e o

min 1 1 2 1
max 4 4 3 5

Perform the following sequence of tasks (on attached separate pages):

A. Model the NSP for any instance. Show how some, if any, of the constraints above are
automatically enforced by your choice of decision variables. Relate each of your constraints
to one of the constraints above, or declare it to be a channelling constraint. To ease our
grading (and your thinking), use mnemonic names, that is use n to denote nurses, d to
denote days, and s to denote shifts. Hint: Read the first paragraph of Question 2. Read
the modelling instructions (of the homeworks) on the next page! (20 points)

B. Identify the symmetries of the problem , of the instance given above, and of your model .
Show how some, if any, of the problem symmetries are broken by your model. (6 points)

C. Break as many of the model and instance symmetries as reasonable. (3 points)

D. Argue for suitable branching heuristics. (2 points)

We will not grade anything written on this or the next page!

Modelling Instructions for Question 3

Your model should be clear and comprehensible, say such that your classmates can understand
and implement it without difficulty. Write it in pseudo-code, as in the lecture slides and home-
works. The instance data, as well as the decision variables (even reifying Booleans) and their
domains, must be declared and their semantics must be given in English , and every constraint
must be annotated with an English paraphrase . You may use standard mathematical nota-
tion and logical notation (but not programming-language-specific lower-ASCII notation), such
as (but not limited to) the following:

• M [i, j], to designate the element in row i and column j of a matrix M ; similarly for arrays
and matrices of any other number of dimensions. You may use ? or intervals to extract
an entire slice of a matrix. If some index is an integer decision variable, then you must
also model the constraint using the Element constraint.

• sum(i in S) f(i), to designate the sum over all i in set S of the numerical expressions f(i).

• for all i in S : c(i), to express that for all i in set S the constraint c(i) must hold; we
refer to the whole statement as a quantified constraint.

• ∧ or & or and (but not &&); you may assume an implicit such logical and between any
two (quantified) constraints.

• ⇔ (is logically equivalent to): you may only use this connective for the reification of a
constraint c(. . .) by a Boolean decision variable b (denoted by c(. . .)⇔ b).

Note that you may not use full logic: you may neither use ∨ (logical or), ⇒ (logically implies),
or⇔ (is logically equivalent to) between two (quantified) constraints, nor use exists i in S : c(i)
to express that there must exist at least one i in set S such that the (quantified) constraint c(i)
holds, nor apply ¬ (logical negation) to a (quantified) constraint.
If you wrap the implicitly reifying Iverson brackets around a constraint c(. . .) in order to
formulate a higher-order constraint γ([c(. . .)]), then you must also model that higher-order
constraint using explicit reification of c(. . .) by a Boolean decision variable b.
You may use the following global constraints, as well as any others seen in the course:

• Distinct({x1, . . . , xn}), also known as AllDifferent({x1, . . . , xn}), requires that any
two decision variables xi and xj with distinct indices take distinct values.

• Element([a1, . . . , an] , x, y), where a1, . . . , an, x, y are integers or integer decision vari-
ables, requires that y be equal to the element at position x (counting from 1) of the array
〈a1, . . . , an〉, that is ax = y.

• GCC({x1, . . . , xn} , [v1, . . . , vm] , [`1, . . . , `m] , [u1, . . . , um]) requires that the number of de-
cision variables among {x1, . . . , xn} that take the constant value vj be between the integer
lower bound `j and integer upper bound uj inclusive, for all j ∈ {1, . . . ,m}.

• [x1, . . . , xn] ≤lex [y1, . . . , yn] requires that the decision-variable array [x1, . . . , xn] be lex-
icographically smaller than or equal to the decision-variable array [y1, . . . , yn].

• Linear([a1, . . . , an] , [x1, . . . , xn] , R, d) requires that the scalar product of the integer array
[a1, . . . , an] with the decision-variable array [x1, . . . , xn] be in relation R with the integer d,

where R ∈ {<,≤,=, 6=,≥, >}, that is

(
n∑

i=1

ai · xi

)
R d.

as well as all non-global constraints.
Good Luck!

