
Constraint-Based Scheduling

Joseph Scott

Department of Information Technology

Uppsala Unversity

Constraint Programming, HT’13



Outline

Scheduling

RCSP

Propagation

Conclusion

1. What is Scheduling?
Example scheduling problems
The general case

2. Resource Constrained Scheduling
Introduction
Global constraint: cumulative

3. Propagation of the cumulative constraint
Time Table
Overload Checking
Edge-Finding
Other cumulative propagation algorithms

4. Conclusion

HT’13 Scheduling - 2 - J. Scott



Outline

Scheduling

Examples

General

RCSP

Propagation

Conclusion

Outline

1. What is Scheduling?
Example scheduling problems
The general case

2. Resource Constrained Scheduling
Introduction
Global constraint: cumulative

3. Propagation of the cumulative constraint
Time Table
Overload Checking
Edge-Finding
Other cumulative propagation algorithms

4. Conclusion

HT’13 Scheduling - 3 - J. Scott



Outline

Scheduling

Examples

General

RCSP

Propagation

Conclusion

From the Modelling lecture:

.
Example (The Sport Scheduling Problem, SSP)
..

......

Find schedule in Periods ×Weeks → Teams × Teams for:

|Teams| = n

|Weeks| = n− 1

|Periods| = n/2

subject to the following constraints:

Each team plays exactly once against each other team.

Each team plays exactly once per week.

Each team plays at most twice per period.

Intuitive idea for a matrix model and a solution for n = 8:
Wk 1 Wk 2 Wk 3 Wk 4 Wk 5 Wk 6 Wk 7

P 1 1 vs. 2 1 vs. 3 2 vs. 6 3 vs. 5 4 vs. 7 4 vs. 8 5 vs. 8
P 2 3 vs. 4 2 vs. 8 1 vs. 7 6 vs. 7 6 vs. 8 2 vs. 5 1 vs. 4
P 3 5 vs. 6 4 vs. 6 3 vs. 8 1 vs. 8 1 vs. 5 3 vs. 7 2 vs. 7
P 4 7 vs. 8 5 vs. 7 4 vs. 5 2 vs. 4 2 vs. 3 1 vs. 6 3 vs. 6
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A different scheduling model

.
Example (The Job-Shop Scheduling Problem)
..

......

..0. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. time.

m
ac
h
in
es

.

c

.

b

.

a

m machines, each processing one operation at a time

n jobs, jobi = ⟨opi1, opi2, . . . , opim⟩
• a job is a sequence of operations, opi

j where each:
▶ executes on a specific machine
▶ lasts a fixed time

• operation order is fixed: .≺ . . . ≺ opi
m

.
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until a ends”
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What is scheduling?
[Baker & Trietsch, 2009]

Given:
• Set of tasks,
• each of some duration,
• sharing one or more finite resources.

Need:
• A feasible execution sequence
• that respects the limitations of the resources.

Additional Constraints:
• precedence: a must finish before b begins
• sequence: task uses several resources in fixed order
• objective: minimize makespan, minimize simultaneous

resource usage, etc.
• . . .

HT’13 Scheduling - 7 - J. Scott



Outline

Scheduling

Examples

General

RCSP

Propagation

Conclusion

What is scheduling?
[Baker & Trietsch, 2009]

Given:
• Set of tasks,
• each of some duration,
• sharing one or more finite resources.

Need:
• A feasible execution sequence
• that respects the limitations of the resources.

Additional Constraints:
• precedence: a must finish before b begins
• sequence: task uses several resources in fixed order
• objective: minimize makespan, minimize simultaneous

resource usage, etc.
• . . .

HT’13 Scheduling - 7 - J. Scott



Outline

Scheduling

Examples

General

RCSP

Propagation

Conclusion

What is scheduling?
[Baker & Trietsch, 2009]

Given:
• Set of tasks,
• each of some duration,
• sharing one or more finite resources.

Need:
• A feasible execution sequence
• that respects the limitations of the resources.

Additional Constraints:
• precedence: a must finish before b begins
• sequence: task uses several resources in fixed order
• objective: minimize makespan, minimize simultaneous

resource usage, etc.
• . . .

HT’13 Scheduling - 7 - J. Scott



Outline

Scheduling

Examples

General

RCSP

Propagation

Conclusion

What is ¬(scheduling)?

Sequencing
• relax the condition that tasks have a duration
• Instead of execution times, just compute an ordering.

Planning
• Many possible tasks, must select which ones to execute.
• Goal can be reached by multiple combinations of tasks.
• (Usually) does not consider durations.
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The Resource Constrained Scheduling Problem (RCSP)

A finite, discrete resource
• Examples

▶ machine with limited processing capacity
▶ fixed number of available employees
▶ etc.

• Resource is limited, but not consumable
▶ capacity limits the number of tasks processed at one time
▶ the resource is not depleted over time

Each task:
• requires part of the resource’s capacity,
• lasts for some amount of time,
• has a domain of valid start times.
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Variants of RCSP

Capacity of Resource
• disjunctive: only one task executes at a time
• cumulative: resource has a capacity that can never be

exceeded

Elasticity of Tasks
• Inelastic: duration and resource requirements are fixed
• Elastic: resource usage and/or duration are flexible

Interruptibility of Tasks
• Preemptive: tasks may interrupt each other
• Non-preemptive: once started, a task continues until

completion

.
Today
..
......non-preemptive, inelastic, cumulative scheduling
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Notation for cumulative scheduling problems
Part 1: Tasks

.
Notation
..

......

Specific tasks are written A,B, . . . ,
while variables referring to some task are written i, j, . . .

Set Tasks of n tasks, where for i ∈ Tasks:
• fixed resource requirement: usei
• fixed duration: dur i
• energy: energy i = usei · dur i

One shared resource of constant capacity C.

..
0

.
5

.
10

.

time

.

C

.

useD

. durD.

D
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Notation for cumulative scheduling problems
Part 2: Start Times

Task i has interval of feasible start times start i
• bounds: earliest start time (est i), latest start time (lst i)
• start i ∈ [est i. . lst i]
• Prune start i by strengthening est i and/or lst i

dur i is fixed, relates start times to completion times
• latest completion time (lct i)

.
Important
..
......Strengthening lct i is symmetric to strengthening est i.

..
0

.
5

.
10

.

C

.

D

.

estD=0

.

lstD=7
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The cumulative constraint

Decision variables: ∀i∈Tasks : start i

Constraint:

∀t ∈ time :
∑

i∈Tasks
starti≤t≤starti+dur i

usei ≤ C

• Time is discrete, not continuous.
• Interested in enforcing bounds consistency only.

Could decompose this into a series of linear constraints;
prefer to use a global constraint to capture the structure of
the problem.
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Time tabling reasons on required parts

estA=0 lctA=4

A

50

A

50

Areq

50

estA=0 lctA=4
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B

50
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50
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50
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What if there is no required part?

estA=0 lctA=6
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50

A

50

50
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Notation for cumulative scheduling problems
Part 3: Sets of Tasks

.
Notation
..
......Sets of tasks (e.g., {A,B,C}) are denoted ω, θ, etc.

Raise several of these concepts to apply to sets of tasks

estω = min
i∈ω

(est i) lctω = max
i∈ω

(lct i) energyω =
∑
i∈ω

(energy i)

..
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.
5

.
10

.

A

.
B

.

C

.

D

.

estA,D=0

.

lctA,B,C=5

.
estB,C=2

.

lctD=10
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e-feasibility and overload checking

What if usei and dur i were not fixed, but the energy was?
• Recall the elastic problem type
• Same area, different shape

Overload Rule:
∀θ ⊆ tasks : energyθ > C(lctθ − estθ) =⇒ Overload

..

A

.

B

.

estA,B=0

.

lctA,B=4

..

est{A,B}=0

.

lct{A,B}=4

.

{A,B}

.

o
verlo

a
d

e-feasible: no overload for any θ ⊆ Tasks
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Is e-feasibility stronger than time tabling?
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Is time tabling stronger than e-feasibility?
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A trivial overload,
not e-feasible,

but ignored by time tabling.

HT’13 Scheduling - 23 - J. Scott



Outline

Scheduling

RCSP

Propagation

Time
Table

Overload

Edge-
Finding

others

Conclusion

Is time tabling stronger than e-feasibility?

..
0

.
5

.

A

.

B

.

C

.

estA,B,C=0

.

lctA,B,C=4

..
0

.
5

.

estA,B,C=0

.

lctA,B,C=4

.

No Required Parts

..
0

.
5

.

A

.

B

.

C

.

estA,B,C=0

.

lctA,B,C=4

A trivial overload,
not e-feasible,

but ignored by time tabling.

HT’13 Scheduling - 23 - J. Scott



Outline

Scheduling

RCSP

Propagation

Time
Table

Overload

Edge-
Finding

others

Conclusion

Is time tabling stronger than e-feasibility?

..
0

.
5

.

A

.

B

.

C

.

estA,B,C=0

.

lctA,B,C=4

..
0

.
5

.

estA,B,C=0

.

lctA,B,C=4

.

No Required Parts

..
0

.
5

.

A

.

B

.

C

.

estA,B,C=0

.

lctA,B,C=4

A trivial overload,
not e-feasible,

but ignored by time tabling.

HT’13 Scheduling - 23 - J. Scott



Outline

Scheduling

RCSP

Propagation

Time
Table

Overload

Edge-
Finding

others

Conclusion

How do we make an effective propagator for
cumulative?

time table and e-feasibility miss different overload conditions

• time table considers tasks exactly,
but in isolation

• e-feasibility considers tasks in combination,
but approximately

A cumulative propagator should consider both

Most common solution:
• Run several different propagation algorithms in sequence
• Gecode’s cumulative: time table, overload checking, plus

edge-finding. . .
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Improving on overload checking

extend the idea of e-feasibility:

1 Start with a set of tasks that is e-feasible.
2 Add another task with overlapping start times.
3 Limit the new task to the domain of the set,

and check for e-feasibility again.
4 If the new set is infeasible,

prune the domain of the new task.

Basis for a set of filtering algorithms used to propagate
cumulative:

• edge-finding
• extended edge-finding
• not-first/not-last
• timetable edge-finding
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Edge-finding: deducing new precedence relations

Given a set of tasks, determine one task such that:
• for every feasible solution,
• that task must come first (or last).

Is there a feasible schedule in which ω = {A,B,C} and D
both end by lctω?

• If not, D must end after lctω.

energyω + energyD > C · (lctω − estω∪{D}) =⇒ ..ω ⋖D

..
0

.
5

.
10

.

A

.
B

.

C

.

D

.

estω=0

.

lctω=5

.

lctD=10
∗

. ∗Running example due to [Viĺım, 2009]
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Edge-finding: deducing new precedence relations

Given a set of tasks, determine one task such that:
• for every feasible solution,
• that task must come first (or last).

Is there a feasible schedule in which ω = {A,B,C} and D
both end by lctω?

• If not, D must end after lctω.

energyω + energyD > C · (lctω − estω∪{D}) =⇒ ..ω ⋖D
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.

est ’D=3

.

D

.

estω=0

.

lctω=5

.

lctD=10
∗

..

“D ends after the end of all tasks in ω”

∗Running example due to [Viĺım, 2009]
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How much can the bound be updated?

Consider energyω in two parts:
• energy which may be scheduled without affecting D,
• and the ..rest , which must affect D.

..est ’i ≥ estω +

⌈
rest(ω, usei)

usei

⌉

..
0

.
5

.
10

.

rest
(ω, useD)

.

D

.

estω=0

.

lctω=5

.

lctD=10

.

lctω − estω

.
C − useD

..rest(ω, usei) =

{
energyω − ..(C − usei)(lctω − estω) if ..ω ̸= ∅

0 ..otherwise
.
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Minimum Slack

Slack measures the capacity not used by a task set ω

..
0

.
5

.

A

.
B

.

C

.

estω=0

.

lctω=5

.

Slack

.
Slack(ω) = C(lctω − estω)− eω

.

ω = {A,B,C}

If energy i > Slack(ω), then part of i falls outside
[estω. . lctω]

.
Conjecture
..

......

For a fixed est and lct , the set of tasks with the minimum slack
is the most likely to conflict with the scheduling of other tasks.
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Task Intervals

There are only O(n) meaningful values for each bound

Task intervals: sets of tasks, bounded by tasks

ωU
L = {i ∈ T | est i ≥ estL ∧ lct i ≤ lctU}

..
0

.
5

.

A

.
B

.

C

.

estA=0

.

lctB=5

ωB
A = {A,B,C}

Removing task C reduces the energy, but not the available
capacity
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There are only O(n) meaningful values for each bound

Task intervals: sets of tasks, bounded by tasks

ωU
L = {i ∈ T | est i ≥ estL ∧ lct i ≤ lctU}
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Using intervals to perform edge-finding
[Baptiste et al., 2001]

General task interval based edge-finding algorithm:

for every upper bound U ∈ T do
for every task i ∈ T by decreasing est i do

if lct i ≤ lctU then

if ..Slack(ωU
i ) < Slack(ωU

L ) then

L← i

else
if ωU

L ⋖ i then

..est i = update based on ωU
L

Two problems:

• Computing the update to est i is (generally) not O(n). .
• The minimum slack interval is not always the best interval. .

.
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for every task i ∈ T by decreasing est i do
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if ..Slack(ωU
i ) < Slack(ωU

L ) then
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else
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Θ-trees for Edge-Finding
[Viĺım, 2009]

....................

increasing est

Arrange all tasks as the leaves of a balanced, binary tree.
• Sorted by increasing est .

Let U be the task with the largest lct
• Notice: for any L, the interval ωU

L is all tasks to the right.
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Θ-trees for Edge-Finding
[Viĺım, 2009]

....................

L

.

U

..

ωU
L

Arrange all tasks as the leaves of a balanced, binary tree.
• Sorted by increasing est .

Let U be the task with the largest lct
• Notice: for any L, the interval ωU

L is all tasks to the right.
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Θ-trees for Edge-Finding
[Viĺım, 2009]

....................

ℓ

.

r

.

min
slack
of r

.

min slack of ℓ
and all of r

.

Lℓ

.

Lr

Goal: use interior nodes to compute the minimum slack of
any subset of tasks in that node’s subtree

• Find the best lower bound, L, for the current upper bound,
U .

Minimum slack set is always a task interval, so only two
choices for each node:

• minimum slack set of right child, or
• minimum slack of left child, and all tasks under right child.
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Minimum Slack Becomes Energy Envelope

Rewrite the edge-finding rule:

energyθ∪{i} > C(lctθ − estθ∪{i}) =⇒ θ ⋖ i

C · estθ∪{i} + energyθ∪{i}︸ ︷︷ ︸
Envθ∪{i}

> C · lctθ =⇒ θ ⋖ i

Can compute the energy envelope of a node v (Envv) by
comparing child nodes, ℓ and r:

Envv =

{
C · estx + energyx if v is a leaf, for task x

max{Env r,Env ℓ+energyr} if v is not a leaf

energyv =

{
energyx if v is a leaf, for task x

energyr + energyℓ if v is not a leaf

Maximizing energy envelope = minimizing slack
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Tree Structure Allows for Efficient Recomputation

...................

L

.

U

..

ωU
L

So far, the tree requires more work, not less!

Make U a zero-energy task, then recompute O( log n)
ancestor nodes.
n upper bounds, so O(n log n) to check them all.

• Unfortunately, that only holds for unary resources. . .
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ωU
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..

U ′

So far, the tree requires more work, not less!

Make U a zero-energy task, then recompute O( log n)
ancestor nodes.
n upper bounds, so O(n log n) to check them all.

• Unfortunately, that only holds for unary resources. . .
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Tree Structure Allows for Efficient Recomputation

...................

U

..

U ′

....

L′

..

ωU′
L′

So far, the tree requires more work, not less!

Make U a zero-energy task, then recompute O( log n)
ancestor nodes.
n upper bounds, so O(n log n) to check them all.

• Unfortunately, that only holds for unary resources. . .

HT’13 Scheduling - 35 - J. Scott



Outline

Scheduling

RCSP

Propagation

Time
Table

Overload

Edge-
Finding

others

Conclusion

For cumulative resources, must consider subsets of ω

{B,C} not energetic enough to require {B,C}⋖D.

{A,B,C}⋖D, and lctA,B,C ≥ lctB,C ,
• therefore D must end after lctB,C .

..
0

.
5

.
10

.
B

.

C

.

D

.

estD=0

.

est{B,C}=2

.

lct{B,C}=5

.

lctD=10

Must find θuℓ ⊆ ωU
L that yields the strongest update.

HT’13 Scheduling - 36 - J. Scott



Outline

Scheduling

RCSP

Propagation

Time
Table

Overload

Edge-
Finding

others

Conclusion

For cumulative resources, must consider subsets of ω
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For cumulative resources, must consider subsets of ω

{B,C} not energetic enough to require {B,C}⋖D.

{A,B,C}⋖D, and lctA,B,C ≥ lctB,C ,
• therefore D must end after lctB,C .
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lctD=10

Must find θuℓ ⊆ ωU
L that yields the strongest update.
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For cumulative resources, must consider subsets of ω

{B,C} not energetic enough to require {B,C}⋖D.

{A,B,C}⋖D, and lctA,B,C ≥ lctB,C ,
• therefore D must end after lctB,C .
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For cumulative resources, must consider subsets of ω

{B,C} not energetic enough to require {B,C}⋖D.

{A,B,C}⋖D, and lctA,B,C ≥ lctB,C ,
• therefore D must end after lctB,C .
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Impact on Overall Complexity

For a given U , the minimum slack interval does correctly
check the edge-finding condition.

It does not always find the subset that produces the
strongest bound update.

• [Mercier & Van Hentenryck, 2008]
• Includes dynamic programming approach with O(kn2)

complexity,
where k is the number of distinct capacity requirements.

[Viĺım, 2009] shows how to use the Θ-tree method outlined
here to find the strongest subset with O(kn log n)
complexity.

• It is significantly more complicated than what you have seen
today.
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Definition: Density

For a task interval θ, the density of θ is given by:

Dens(θ) =
energyθ

lctθ − estθ

..
0

.
5

.

A

.
B

.

C

.

estθ=0

.

lctθ=5

..

Dens(θ)

.
0

.
5

.

estθ=0

.

lctθ=5

In (most) cases where the interval responsible for the
strongest update is not the interval of minimum slack,
it is the interval of maximum density.
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min slack/max density edge-finding algorithm
[Kameugne et al., 2011]

for U ∈ T do
for i ∈ T by decreasing est i do

if lct i ≤ lctU then
if Dens(ωU

i ) > Dens(ωU
L ) then

L← i

else
Dupdi ← update based on ωU

L

for i ∈ T by increasing est i do
if Slack(θUi ) < Slack(θUℓ ) then

ℓ← i
if lct i > lctU then

SLupdi ← update based on θUℓ
if θUℓ ⋖ i then

est ′i ← max(Dupdi, SLupdi)
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A comparison of the algorithms

O(n2) does not strictly dominate the O(kn log n)
complexity of Θ-tree edge-finding, especially for low values
of k.

• Since k is bounded by n, Θ-tree complexity varies from
O(n log n) to O(n2 log n).

Furthermore, the maximum density algorithm may not
always make the strongest update on the first iteration.

• If an edge finding update exists, will always make some
update.

• Always makes the strongest update when:
▶ estθ ≤ est i, or
▶ est i < estθ ≤ estρ.

• Number of weaker updates bounded in O(n).
A form of “lazy” evaluation

• Makes sense to prune fast, then let a lower complexity
propagator run again.

• With the guarantee that the edge finder can then enforce the
stronger update on a later iteration, if necessary.
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1. What is Scheduling?
Example scheduling problems
The general case

2. Resource Constrained Scheduling
Introduction
Global constraint: cumulative

3. Propagation of the cumulative constraint
Time Table
Overload Checking
Edge-Finding
Other cumulative propagation algorithms

4. Conclusion
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Extended edge-finding

Recall the edge-finding rule:

energyω + energy i > ..C · (lctω − estω∪{i}) =⇒ ω ⋖ i

In this example
• no feasible schedule where I starts before 3,
• but the edge-finding condition is not satisfied for

ω = {G,H} and i = I.

..
0

.
3

.
6

.
9

.

H

.

G

.

I

.

est{G,H}=2

.

est I=0

.

lct{G,H}=4

.

lct I=10

.
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Extended edge-finding

Recall the edge-finding rule:

energyω + energy i > ..C · (lctω − estω∪{i}) =⇒ ω ⋖ i

In this example
• no feasible schedule where I starts before 3,
• but the edge-finding condition is not satisfied for
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Recall the edge-finding rule:

energyω + energy i > ..C · (lctω − estω∪{i}) =⇒ ω ⋖ i

In this example
• no feasible schedule where I starts before 3,
• but the edge-finding condition is not satisfied for
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Extended edge-finding

Recall the edge-finding rule:

energyω + energy i > ..C · (lctω − estω∪{i}) =⇒ ω ⋖ i

In this example
• no feasible schedule where I starts before 3,
• but the edge-finding condition is not satisfied for

ω = {G,H} and i = I.
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Extended edge-finding

Recall the edge-finding rule:

energyω + energy i > ..C · (lctω − estω∪{i}) =⇒ ω ⋖ i

In this example
• no feasible schedule where I starts before 3,
• but the edge-finding condition is not satisfied for

ω = {G,H} and i = I.
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est{G,H}=2
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lct{G,H}=4
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Edge-finding is too loose a relaxation
for tasks with an est in this range.

.
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Extended edge-finding

The extended edge-finding rule (for est i < estω):

energyω+energy i− ..usei(estω − est i) > ..C · (lctω − estω∪{i}) ⇒ ω⋖i

..
0
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3

.
6

.
9

.

est{G,H,I}=0

.
{G,H}

.

lct{G,H}=4

.

lct I=10

.

I

.
Intuition
..

......

Split task i into two parts: the largest part that could execute
before estω, and the remainder. Check the edge-finding
condition on ω and the remainder.
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The extended edge-finding rule (for est i < estω):
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Extended edge-finding

The extended edge-finding rule (for est i < estω):
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Split task i into two parts: the largest part that could execute
before estω, and the remainder. Check the edge-finding
condition on ω and the remainder.
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Not-first/not-last

In edge-finding, looking for a task that must come first or
last in a set of tasks

Not-first/not-last looks for a task that cannot be the first or
last in a set

• There is at least one activity in θ that must be scheduled
before (after) i.

• Requires reasoning on the minimum earliest completion time
of any task in θ.

• A “lazy” O(n2 log n) algorithm reported at CP 2010.
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Energetic Reasoning

Substantially stronger filtering than edge-finding or
not-first/not-last.

Considers required energy consumption over various time
periods, tries to deduce when a task must be shifted earlier
or later.

Best algorithm is O(n3)!
• Is it worth it? Maybe, maybe not.

More recently, [Viĺım, 2011] presented a
“Timetable Edge-Finding” algorithm

• Required parts plus edge-finding, in O(n2) time.
• Incorporates some deductions made by energetic reasoning.
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Further Reading I

Baker K.R., Trietsch D.
Principles of Sequencing and Scheduling.
John Wiley & Sons, Hoboken, New Jersey (2009).
Comprehensive overview of scheduling, from OR perspective.

Baptiste P., Le Pape C., Nuijten W.P.M.
Constraint-based scheduling: applying constraint programming to
scheduling problems.
Springer, Berlin / Heidelberg (2001).
Algorithms out of date, but remains the most complete reference.

Viĺım P.
Edge finding filtering algorithm for discrete cumulative resources in
O(kn log n).
Gent I.P., ed., CP 2009, LNCS, vol. 5732. Springer (2009).
A challenging paper, but a wonderful algorithm (used in the current release of
Gecode). Winner, “Best Paper, CP 2009.”.

Scott J.
Filtering Algorithms for Discrete Cumulative Resources.
Master’s thesis, Uppsala University (2010).
Details omitted by [Viĺım, 2009], plus explanations and corrections.
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Further Reading II

Mercier L., Van Hentenryck P.
Edge finding for cumulative scheduling.
INFORMS Journal on Computing, 20:143 (2008).
More recent algorithms are faster, but this remains the best theoretical
discussion.

Kameugne R., Fotso L.P., Scott J., Ngo-Kateu Y.
A quadratic edge-finding filtering algorithm for cumulative resource
constraints.
Lee J.H.M., ed., CP 2011, LNCS, vol. 6876. Springer (2011).
Simpler to implement than Θ-tree filtering, and generally faster in practice.
Planned for inclusion in the next major release of Gecode.

Viĺım P.
Timetable edge finding filtering algorithm for discrete cumulative
resources.
Achterberg T., Beck J.C., eds., CPAIOR 2011, LNCS, vol. 6697, pp. 230–245.
Springer (2011).
Interesting hybrid of edge-finding, time tabling, and parts of energetic
reasoning, all in O(n2) time.
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