Constraint-Based Scheduling

Joseph Scott

Department of Information Technology
Uppsala University

Constraint Programming, HT’13
1. What is Scheduling?
 Example scheduling problems
 The general case

2. Resource Constrained Scheduling
 Introduction
 Global constraint: \textit{cumulative}

3. Propagation of the cumulative constraint
 Time Table
 Overload Checking
 Edge-Finding
 Other \textit{cumulative} propagation algorithms

4. Conclusion
1. What is Scheduling?
 Example scheduling problems
 The general case

2. Resource Constrained Scheduling
 Introduction
 Global constraint: cumulative

3. Propagation of the cumulative constraint
 Time Table
 Overload Checking
 Edge-Finding
 Other cumulative propagation algorithms

4. Conclusion
From the Modelling lecture:

Example (The Sport Scheduling Problem, SSP)

Find schedule in $Periods \times Weeks \rightarrow Teams \times Teams$ for:

- $|Teams| = n$
- $|Weeks| = n - 1$
- $|Periods| = n/2$

subject to the following constraints:

- Each team plays exactly once against each other team.
- Each team plays exactly once per week.
- Each team plays at most twice per period.

Intuitive idea for a matrix model and a solution for $n = 8$:

<table>
<thead>
<tr>
<th></th>
<th>Wk 1</th>
<th>Wk 2</th>
<th>Wk 3</th>
<th>Wk 4</th>
<th>Wk 5</th>
<th>Wk 6</th>
<th>Wk 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>P 1</td>
<td>1 vs. 2</td>
<td>1 vs. 3</td>
<td>2 vs. 6</td>
<td>3 vs. 5</td>
<td>4 vs. 7</td>
<td>4 vs. 8</td>
<td>5 vs. 8</td>
</tr>
<tr>
<td>P 2</td>
<td>3 vs. 4</td>
<td>2 vs. 8</td>
<td>1 vs. 7</td>
<td>6 vs. 7</td>
<td>6 vs. 8</td>
<td>2 vs. 5</td>
<td>1 vs. 4</td>
</tr>
<tr>
<td>P 3</td>
<td>5 vs. 6</td>
<td>4 vs. 6</td>
<td>3 vs. 8</td>
<td>1 vs. 8</td>
<td>1 vs. 5</td>
<td>3 vs. 7</td>
<td>2 vs. 7</td>
</tr>
<tr>
<td>P 4</td>
<td>7 vs. 8</td>
<td>5 vs. 7</td>
<td>4 vs. 5</td>
<td>2 vs. 4</td>
<td>2 vs. 3</td>
<td>1 vs. 6</td>
<td>3 vs. 6</td>
</tr>
</tbody>
</table>
A different scheduling model

Example (The Job-Shop Scheduling Problem)

- \(m \) machines, each processing one operation at a time
- \(n \) jobs, \(\text{job}_i = \langle \text{op}_1^i, \text{op}_2^i, \ldots, \text{op}_m^i \rangle \)
 - a job is a sequence of operations, \(\text{op}_j^i \) where each:
 - executes on a specific machine
 - lasts a fixed time
 - operation order is fixed: \(\prec \ldots \prec \text{op}_m^i \)
A different scheduling model

Example (The Job-Shop Scheduling Problem)

- \(m \) machines, each processing one operation at a time
- \(n \) jobs, \(job_i = \langle op_{i1}, op_{i2}, \ldots, op_{im} \rangle \)
 - a job is a sequence of operations, \(op_{ij} \) where each:
 - executes on a specific machine
 - lasts a fixed time
 - operation order is fixed: \(\prec \ldots \prec op_{im} \)
A different scheduling model

Example (The Job-Shop Scheduling Problem)

- **m** machines, each processing one operation at a time
- **n** jobs, \(\text{job}_i = \langle \text{op}_1^i, \text{op}_2^i, \ldots, \text{op}_m^i \rangle \)
 - a job is a sequence of operations, \(\text{op}_j^i \)
 - executes on a specific machine
 - lasts a fixed time
 - operation order is fixed: \(\text{op}_1^i \prec \text{op}_2^i \prec \ldots \prec \text{op}_m^i \)
 - \(a \prec b \) means “b cannot start until a ends”
A different scheduling model

Example (The Job-Shop Scheduling Problem)

- \(m \) machines, each processing one operation at a time
- \(n \) jobs, \(\text{job}_i = \langle \text{op}_1^i, \text{op}_2^i, \ldots, \text{op}_m^i \rangle \)
 - a job is a sequence of operations, \(\text{op}_j^i \)
 - executes on a specific machine
 - lasts a fixed time
 - operation order is fixed: \(\text{op}_1^i \prec \text{op}_2^i \prec \ldots \prec \text{op}_m^i \)

\(a \prec b \) means “\(b \) cannot start until \(a \) ends”
A different scheduling model

Example (The Job-Shop Scheduling Problem)

- **m** machines, each processing one operation at a time
- **n** jobs, $job_i = \langle op^i_1, op^i_2, \ldots, op^i_m \rangle$
 - a job is a sequence of operations, op^i_j
 - executes on a specific machine
 - lasts a fixed time
 - operation order is fixed: $op^i_1 \prec op^i_2 \prec \ldots \prec op^i_m$

$a \prec b$ means "b cannot start until a ends"
A different scheduling model

Example (The Job-Shop Scheduling Problem)

- \(m \) machines, each processing one operation at a time
- \(n \) jobs, \(\text{job}_i = \langle \text{op}_1^i, \text{op}_2^i, \ldots, \text{op}_m^i \rangle \)
 - a job is a sequence of operations, \(\text{op}_j^i \)
 - executes on a specific machine
 - lasts a fixed time
 - operation order is fixed: \(\text{op}_1^i < \text{op}_2^i \prec \ldots \prec \text{op}_m^i \)

\(a \prec b \) means “\(b \) cannot start until \(a \) ends”
1. What is Scheduling?
 Example scheduling problems
 The general case

2. Resource Constrained Scheduling
 Introduction
 Global constraint: $cumulative$

3. Propagation of the cumulative constraint
 Time Table
 Overload Checking
 Edge-Finding
 Other $cumulative$ propagation algorithms

4. Conclusion
What is scheduling?
[Baker & Trietsch, 2009]

- **Given:**
 - Set of tasks,
 - each of some duration,
 - sharing one or more finite resources.

- **Need:**
 - A feasible execution sequence
 - that respects the limitations of the resources.

- **Additional Constraints:**
 - precedence: a must finish before b begins
 - sequence: task uses several resources in fixed order
 - objective: minimize makespan, minimize simultaneous resource usage, etc.
 - . . .
What is scheduling?
[Baker & Trietsch, 2009]

■ Given:
 • Set of tasks,
 • each of some duration,
 • sharing one or more finite resources.

■ Need:
 • A feasible execution sequence
 • that respects the limitations of the resources.

■ Additional Constraints:
 • precedence: a must finish before b begins
 • sequence: task uses several resources in fixed order
 • objective: minimize makespan, minimize simultaneous resource usage, etc.
 • ...
What is scheduling?
[Baker & Trietsch, 2009]

- Given:
 - Set of tasks,
 - each of some duration,
 - sharing one or more finite resources.

- Need:
 - A feasible execution sequence
 - that respects the limitations of the resources.

- Additional Constraints:
 - precedence: a must finish before b begins
 - sequence: task uses several resources in fixed order
 - objective: minimize makespan, minimize simultaneous resource usage, etc.
 - ...
What is (scheduling)?

- **Sequencing**
 - relax the condition that tasks have a duration
 - Instead of execution times, just compute an ordering.

- **Planning**
 - Many possible tasks, must select which ones to execute.
 - Goal can be reached by multiple combinations of tasks.
 - (Usually) does not consider durations.
Outline

1. What is Scheduling?
 Example scheduling problems
 The general case

2. Resource Constrained Scheduling
 Introduction
 Global constraint: cumulative

3. Propagation of the cumulative constraint
 Time Table
 Overload Checking
 Edge-Finding
 Other cumulative propagation algorithms

4. Conclusion
The Resource Constrained Scheduling Problem (RCSP)

- A finite, discrete resource
 - Examples
 - machine with limited processing capacity
 - fixed number of available employees
 - etc.
 - Resource is limited, but not consumable
 - capacity limits the number of tasks processed at one time
 - the resource is not depleted over time

- Each task:
 - requires part of the resource’s capacity,
 - lasts for some amount of time,
 - has a domain of valid start times.
The Resource Constrained Scheduling Problem (RCSP)

- A finite, discrete resource
 - Examples
 - machine with limited processing capacity
 - fixed number of available employees
 - etc.
 - Resource is limited, but not consumable
 - capacity limits the number of tasks processed at one time
 - the resource is not depleted over time

- Each task:
 - requires part of the resource’s capacity,
 - lasts for some amount of time,
 - has a domain of valid start times.
Variants of RCSP

- **Capacity of Resource**
 - disjunctive: only one task executes at a time
 - cumulative: resource has a capacity that can never be exceeded

- **Elasticity of Tasks**
 - Inelastic: duration and resource requirements are fixed
 - Elastic: resource usage and/or duration are flexible

- **Interruptibility of Tasks**
 - Preemptive: tasks may interrupt each other
 - Non-preemptive: once started, a task continues until completion

Today
non-preemptive, inelastic, cumulative scheduling
Variants of RCSP

- **Capacity of Resource**
 - disjunctive: only one task executes at a time
 - cumulative: resource has a capacity that can never be exceeded

- **Elasticity of Tasks**
 - Inelastic: duration and resource requirements are fixed
 - Elastic: resource usage and/or duration are flexible

- **Interruptibility of Tasks**
 - Preemptive: tasks may interrupt each other
 - Non-preemptive: once started, a task continues until completion

Today

non-preemptive, inelastic, cumulative scheduling
Notation for cumulative scheduling problems
Part 1: Tasks

Notation
Specific tasks are written A, B, \ldots, while variables referring to some task are written i, j, \ldots

- Set $Tasks$ of n tasks, where for $i \in Tasks$:
 - fixed resource requirement: use_i
 - fixed duration: dur_i
 - energy: $energy_i = use_i \cdot dur_i$

- One shared resource of constant capacity C.

![Diagram showing time axis and resource usage](image-url)
Notation for cumulative scheduling problems
Part 1: Tasks

Notation

Specific tasks are written \(A, B, \ldots \),
while variables referring to some task are written \(i, j, \ldots \)

- Set \(\text{Tasks} \) of \(n \) tasks, where for \(i \in \text{Tasks} \):
 - fixed resource requirement: \(\text{use}_i \)
 - fixed duration: \(\text{dur}_i \)
 - energy: \(\text{energy}_i = \text{use}_i \cdot \text{dur}_i \)

- One shared resource of constant capacity \(C \).

Diagram:

- Time axis from 0 to 10
- Resource axis from 0 to 2
- Task \(D \) with duration \(\text{dur}_D \) and energy \(\text{energy}_D \)
- Resource usage \(\text{use}_D \)
Notation for cumulative scheduling problems
Part 1: Tasks

Notation

Specific tasks are written A, B, \ldots, while variables referring to some task are written i, j, \ldots

- Set $Tasks$ of n tasks, where for $i \in Tasks$:
 - fixed resource requirement: use_i
 - fixed duration: dur_i
 - energy: $energy_i = use_i \cdot dur_i$
- One shared resource of constant capacity C.

![Diagram of cumulative scheduling](image)
Notation for cumulative scheduling problems
Part 2: Start Times

- Task i has interval of feasible start times start_i
 - bounds: earliest start time (est_i), latest start time (lst_i)
 - $\text{start}_i \in [\text{est}_i .. \text{lst}_i]$
 - Prune start_i by strengthening est_i and/or lst_i

- dur_i is fixed, relates start times to completion times
 - latest completion time (lct_i)

Important

Strengthening lct_i is symmetric to strengthening est_i.

![Diagram showing start and end times with intervals and bounds]
Notation for cumulative scheduling problems
Part 2: Start Times

- Task i has interval of feasible start times $start_i$
 - bounds: earliest start time (est_i), latest start time (lst_i)
 - $start_i \in [est_i .. lst_i]$
 - Prune $start_i$ by strengthening est_i and/or lst_i
- dur_i is fixed, relates start times to completion times
 - latest completion time (lct_i)

Important

Strengthening lct_i is symmetric to strengthening est_i.

![Diagram showing task scheduling with start and completion times](image-url)
Outline

1. What is Scheduling?
 - Example scheduling problems
 - The general case

2. Resource Constrained Scheduling
 - Introduction
 - Global constraint: cumulative

3. Propagation of the cumulative constraint
 - Time Table
 - Overload Checking
 - Edge-Finding
 - Other cumulative propagation algorithms

4. Conclusion
The cumulative constraint

- **Decision variables:** \(\forall i \in Tasks : start_i \)

- **Constraint:**

 \[
 \forall t \in time : \quad \sum_{i \in Tasks} use_i \leq C \\
 \text{subject to: } \quad \text{start}_i \leq t \leq \text{start}_i + \text{dur}_i
 \]

 - Time is discrete, not continuous.
 - Interested in enforcing bounds consistency only.

- Could decompose this into a series of linear constraints; prefer to use a global constraint to capture the structure of the problem.
Outline

1. What is Scheduling?
 - Example scheduling problems
 - The general case

2. Resource Constrained Scheduling
 - Introduction
 - Global constraint: cumulative

3. Propagation of the cumulative constraint
 - Time Table
 - Overload Checking
 - Edge-Finding
 - Other cumulative propagation algorithms

4. Conclusion
Time tabling reasons on required parts

![Diagram showing time tabling with estimated start (est) and latest completion (lct) for tasks A and B.](image)
What if there is no required part?

\[\text{est}_A = 0 \quad \text{lct}_A = 6 \]

Diagram showing time intervals with labeled 'A'.
Outline

1. What is Scheduling?
 Example scheduling problems
 The general case

2. Resource Constrained Scheduling
 Introduction
 Global constraint: cumulative

3. Propagation of the cumulative constraint
 Time Table
 Overload Checking
 Edge-Finding
 Other cumulative propagation algorithms

4. Conclusion
Notation for cumulative scheduling problems
Part 3: Sets of Tasks

Sets of tasks (e.g., \(\{A, B, C\}\)) are denoted \(\omega, \theta,\) etc.

- Raise several of these concepts to apply to sets of tasks

\[
est_\omega = \min_{i \in \omega} (est_i) \quad lct_\omega = \max_{i \in \omega} (lct_i) \quad energy_\omega = \sum_{i \in \omega} (energy_i)
\]

\[
est_{A,D} = 0 \quad lct_{A,B,C} = 5 \quad lct_D = 10
\]

\(est\) and \(lct\) values for tasks A, B, C, and D.
Notation for cumulative scheduling problems
Part 3: Sets of Tasks

Notation
Sets of tasks (e.g., \{A, B, C\}) are denoted \(\omega, \theta, \) etc.

- Raise several of these concepts to apply to sets of tasks

\[
est_\omega = \min_{i \in \omega} (est_i) \quad lct_\omega = \max_{i \in \omega} (lct_i) \quad energy_\omega = \sum_{i \in \omega} (energy_i)
\]

\[
est_{\{A,B,C\}} = 0 \quad lct_{\{A,B,C\}} = 5 \quad lct_D = 10
\]
e-feasibility and overload checking

- What if use_i and dur_i were not fixed, but the energy was?
 - Recall the elastic problem type
 - Same area, different shape

Overload Rule:
\[
\forall \theta \subseteq tasks: energy_\theta > C(lct_\theta - est_\theta) \implies \text{Overload}
\]

- **e-feasible**: no overload for any $\theta \subseteq Tasks$
Is e-feasibility stronger than time tabling?

- $est_{A,B} = 0$
- $lct_{A,B} = 4$

- $est_{A,B} = 0$
- $lct_{A,B} = 4$
Is time tabling stronger than e-feasibility?

A trivial overload, not e-feasible, but ignored by time tabling.
Is time tabling stronger than e-feasibility?

A trivial overload, not e-feasible, but ignored by time tabling.
Is time tabling stronger than e-feasibility?

A trivial overload, not e-feasible, but ignored by time tabling.
How do we make an effective propagator for cumulative?

- time table and e-feasibility miss different overload conditions
 - time table considers tasks exactly, but in isolation
 - e-feasibility considers tasks in combination, but approximately

- A *cumulative* propagator should consider **both**

- Most common solution:
 - Run several different propagation algorithms in sequence
 - Gecode’s *cumulative*: time table, overload checking, plus edge-finding...
Outline

1. What is Scheduling?
 Example scheduling problems
 The general case

2. Resource Constrained Scheduling
 Introduction
 Global constraint: cumulative

3. Propagation of the cumulative constraint
 Time Table
 Overload Checking
 Edge-Finding
 Other cumulative propagation algorithms

4. Conclusion
Improving on overload checking

- extend the idea of e-feasibility:
 1. Start with a set of tasks that is e-feasible.
 2. Add another task with overlapping start times.
 3. Limit the new task to the domain of the set, and check for e-feasibility again.
 4. If the new set is infeasible, prune the domain of the new task.

- Basis for a set of filtering algorithms used to propagate cumulative:
 - edge-finding
 - extended edge-finding
 - not-first/not-last
 - timetable edge-finding
Edge-finding: deducing new precedence relations

- Given a set of tasks, determine one task such that:
 - for every feasible solution,
 - that task must come first (or last).
- Is there a feasible schedule in which \(\omega = \{A, B, C\} \) and D both end by \(lct_\omega \)?
 - If not, D must end after \(lct_\omega \).

\[
\text{energy}_\omega + \text{energy}_D > C \cdot (lct_\omega - est_{\omega \cup \{D\}}) \implies \omega < D
\]

Running example due to [VILÍM, 2009]

```
est_\omega = 0  \quad lct_\omega = 5  \quad lct_D = 10
```

```
\begin{array}{c}
\text{A} \\
\text{B} \\
\text{C} \\
\text{D}
\end{array}
```

Running example due to [VILÍM, 2009]
Edge-finding: deducing new precedence relations

- Given a set of tasks, determine one task such that:
 - for every feasible solution,
 - that task must come first (or last).
- Is there a feasible schedule in which $\omega = \{A, B, C\}$ and D both end by lct_ω?
 - If not, D must end after lct_ω.

$$energy_\omega + energy_D > C \cdot (lct_\omega - est_{\omega \cup \{D\}}) \implies \omega < D$$

Running example due to [VIĹM, 2009]
Edge-finding: deducing new precedence relations

- Given a set of tasks, determine one task such that:
 - for every feasible solution,
 - that task must come first (or last).
- Is there a feasible schedule in which \(\omega = \{A, B, C\} \) and D both end by \(\text{lct}_\omega \)?
 - If not, D must end after \(\text{lct}_\omega \).

\[
\text{energy}_\omega + \text{energy}_D > C \cdot (\text{lct}_\omega - \text{est}_{\omega \cup \{D\}}) \quad \Rightarrow \quad \omega \lessdot D
\]

"D ends after the end of all tasks in \(\omega \)"

Running example due to [VILÍM, 2009]
How much can the bound be updated?

Consider $energy_\omega$ in two parts:
- energy which may be scheduled without affecting D,
- and the $rest$, which must affect D.

$$est'_i \geq est_\omega + \left\lceil \frac{rest(\omega, use_i)}{use_i} \right\rceil$$

<table>
<thead>
<tr>
<th>$est_\omega = 0$</th>
<th>$lct_\omega = 5$</th>
<th>$lct_D = 10$</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>$rest(\omega, use_D)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$C - use_D$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

$$rest(\omega, use_i) = \begin{cases} energy_\omega - (C - use_i)(lct_\omega - est_\omega) & \text{if } \omega \neq \emptyset \\ 0 & \text{otherwise} \end{cases}$$
How much can the bound be updated?

- Consider \(\text{energy}_\omega \) in two parts:
 - energy which may be scheduled without affecting \(D \),
 - and the \(\text{rest} \), which \textit{must} affect \(D \).

\[
est'_i \geq \text{est}_\omega + \left\lceil \frac{\text{rest}(\omega, \text{use}_i)}{\text{use}_i} \right\rceil
\]

\[
est\omega = 0 \quad \text{lct}_\omega = 5 \quad \text{lct}_D = 10
\]

\[
est\omega - \text{lct}\omega \quad \text{rest}(\omega, \text{use}_D)
\]

\[ext{rest}(\omega, \text{use}_i) = \begin{cases}
\text{energy}_\omega - (C - \text{use}_i)(\text{lct}_\omega - \text{est}_\omega) & \text{if } \omega \neq \emptyset \\
0 & \text{otherwise}
\end{cases}
\]
How much can the bound be updated?

Consider $energy_\omega$ in two parts:
- energy which may be scheduled without affecting D,
- and the rest, which must affect D.

$$est'_i \geq est_\omega + \left\lceil \frac{rest(\omega, use_i)}{use_i} \right\rceil$$

<table>
<thead>
<tr>
<th>$est_\omega = 0$</th>
<th>$est'_D = 3$</th>
<th>$lct_\omega = 5$</th>
<th>$lct_D = 10$</th>
</tr>
</thead>
</table>

$rest(\omega, use_i) = \begin{cases} energy_\omega - (C - use_i)(lct_\omega - est_\omega) & \text{if } \omega \neq \emptyset \\ 0 & \text{otherwise} \end{cases}$
Minimum Slack

- Slack measures the capacity not used by a task set ω

$$\text{Slack}(\omega) = C(lct_{\omega} - est_{\omega}) - e_{\omega}$$

- If $energy_i > \text{Slack}(\omega)$, then part of i falls outside $[est_{\omega}, lct_{\omega}]$

Conjecture
For a fixed est and lct, the set of tasks with the minimum slack is the most likely to conflict with the scheduling of other tasks.
Task Intervals

- There are only $O(n)$ meaningful values for each bound
- Task intervals: sets of tasks, bounded by tasks

$$\omega^U_L = \{ i \in T | est_i \geq est_L \land lct_i \leq lct_U \}$$

- $\omega_A^B = \{ A, B, C \}$
- Removing task C reduces the energy, but not the available capacity
Task Intervals

- There are only $O(n)$ meaningful values for each bound
- Task intervals: sets of tasks, bounded by tasks

$$\omega^U_L = \{i \in T \mid est_i \geq est_L \land lct_i \leq lct_U\}$$

- $\omega_A^B = \{A, B, C\}$
- Removing task C reduces the energy, but not the available capacity
Using intervals to perform edge-finding
[Baptiste et al., 2001]

- General task interval based edge-finding algorithm:

 for every upper bound $U \in T$ do

 for every task $i \in T$ by decreasing est_i do

 if $lct_i \leq lct_U$ then

 if $Slack(\omega_i^U) < Slack(\omega_L^U)$ then

 $L \leftarrow i$

 else

 if $\omega_L^U \leq i$ then

 $est_i = \text{update based on } \omega_L^U$

- Two problems:
 - Computing the update to est_i is (generally) not $O(n)$.
 - The minimum slack interval is not always the best interval.
Using intervals to perform edge-finding
[Baptiste et al., 2001]

- General task interval based edge-finding algorithm:

 for every upper bound $U \in T$ do

 for every task $i \in T$ by decreasing est_i do
 if $lct_i \leq lct_U$ then
 if $Slack(\omega_i^U) < Slack(\omega_L^U)$ then
 $L \leftarrow i$
 else
 if $\omega_L^U \leq i$ then
 $est_i = \text{update based on } \omega_L^U$

 - Two problems:
 - Computing the update to est_i is (generally) not $O(n)$.
 - The minimum slack interval is not always the best interval.
Using intervals to perform edge-finding
[Baptiste et al., 2001]

- General task interval based edge-finding algorithm:

\[
\text{for every upper bound } U \in T \text{ do} \\
\quad \text{for every task } i \in T \text{ by decreasing } est_i \text{ do} \\
\quad \quad \text{if } lct_i \leq lct_U \text{ then} \\
\quad \quad \quad \text{if } \text{Slack}(\omega_i^U) < \text{Slack}(\omega_L^U) \text{ then} \\
\quad \quad \quad \quad L \leftarrow i \\
\quad \quad \text{else} \\
\quad \quad \quad \text{if } \omega_L^U \leq i \text{ then} \\
\quad \quad \quad \quad est_i = \text{update based on } \omega_L^U
\]

- Two problems:
 - Computing the update to \(est_i \) is (generally) not \(O(n) \).
 - The minimum slack interval is not always the best interval.
Arrange all tasks as the leaves of a balanced, binary tree.

- Sorted by increasing \(est \).

Let \(U \) be the task with the largest \(lct \)

- Notice: for any \(L \), the interval \(\omega^U_L \) is all tasks to the right.
Arrange all tasks as the leaves of a balanced, binary tree.

- Sorted by increasing est.

Let U be the task with the largest lct

- Notice: for any L, the interval ω^U_L is all tasks to the right.
Goal: use interior nodes to compute the minimum slack of any subset of tasks in that node’s subtree
 • Find the best lower bound, L, for the current upper bound, U.

Minimum slack set is always a task interval, so only two choices for each node:
 • minimum slack set of right child, or
 • minimum slack of left child, and all tasks under right child.
Minimum Slack Becomes Energy Envelope

■ Rewrite the edge-finding rule:

\[
\begin{align*}
\text{energy}_{\theta \cup \{i\}} & > C (\text{lct}_\theta - \text{est}_{\theta \cup \{i\}}) \implies \theta < i \\
C \cdot \text{est}_{\theta \cup \{i\}} + \text{energy}_{\theta \cup \{i\}} & > C \cdot \text{lct}_\theta \implies \theta < i
\end{align*}
\]

■ Can compute the energy envelope of a node \(v \) (\(Env_v \)) by comparing child nodes, \(\ell \) and \(r \):

\[
Env_v = \begin{cases}
C \cdot \text{est}_x + \text{energy}_x & \text{if } v \text{ is a leaf, for task } x \\
\max\{Env_r, Env_\ell + \text{energy}_r\} & \text{if } v \text{ is not a leaf}
\end{cases}
\]

\[
\text{energy}_v = \begin{cases}
\text{energy}_x & \text{if } v \text{ is a leaf, for task } x \\
\text{energy}_r + \text{energy}_\ell & \text{if } v \text{ is not a leaf}
\end{cases}
\]

■ Maximizing energy envelope = minimizing slack
Tree Structure Allows for Efficient Recomputation

- So far, the tree requires more work, not less!
- Make U a zero-energy task, then recompute $O(\log n)$ ancestor nodes.
- n upper bounds, so $O(n \log n)$ to check them all.
 - Unfortunately, that only holds for unary resources...
Tree Structure Allows for Efficient Recomputation

- So far, the tree requires more work, not less!
- Make U a zero-energy task, then recompute $O(\log n)$ ancestor nodes.
- n upper bounds, so $O(n \log n)$ to check them all.
 - Unfortunately, that only holds for unary resources...
Tree Structure Allows for Efficient Recomputation

- So far, the tree requires more work, not less!
- Make U a zero-energy task, then recompute $O(\log n)$ ancestor nodes.
- n upper bounds, so $O(n \log n)$ to check them all.
 - Unfortunately, that only holds for unary resources...
So far, the tree requires more work, not less!
Make U a zero-energy task, then recompute $O(\log n)$
ancestor nodes.
n upper bounds, so $O(n \log n)$ to check them all.
• Unfortunately, that only holds for unary resources...
For cumulative resources, must consider subsets of ω

- $\{B, C\}$ not energetic enough to require $\{B, C\} \preceq D$.
- $\{A, B, C\} \preceq D$, and $lct_{A,B,C} \geq lct_{B,C}$,
 - therefore D must end after $lct_{B,C}$.

\[\begin{align*}
est_D &= 0 & \nest_{\{B,C\}} &= 2 & \lct_{\{B,C\}} &= 5 & \lct_D &= 10
\end{align*}\]

- Must find $\theta^u_\ell \subseteq \omega^U_L$ that yields the strongest update.
For cumulative resources, must consider subsets of ω

- $\{B, C\}$ not energetic enough to require $\{B, C\} \preceq D$.
- $\{A, B, C\} \preceq D$, and $lct_{A,B,C} \geq lct_{B,C}$, therefore D must end after $lct_{B,C}$.

- Must find $\theta^u_\ell \subseteq \omega^U_L$ that yields the strongest update.
For cumulative resources, must consider subsets of ω

- $\{B, C\}$ not energetic enough to require $\{B, C\} \preceq D$.
- $\{A, B, C\} \preceq D$, and $\text{lct}_{A,B,C} \geq \text{lct}_{B,C}$,
 - therefore D must end after $\text{lct}_{B,C}$.

$$\begin{align*}
est_{\{A,B,C\}} &= \nest_D = 0 & \text{lct}_{\{A,B,C\}} &= \text{lct}_{\{B,C\}} = 5 & \text{lct}_D &= 10 \\
A &\quad & C &\quad & D \\
B &\quad & \text{Must find } \theta^u_{\ell} \subseteq \omega^U_L \text{ that yields the strongest update.} \end{align*}$$
For cumulative resources, must consider subsets of ω

- $\{B, C\}$ not energetic enough to require $\{B, C\} \preceq D$.
- $\{A, B, C\} \preceq D$, and $lct_{A,B,C} \geq lct_{B,C}$,
 - therefore D must end after $lct_{B,C}$.

\[
\begin{align*}
est_{\{A,B,C\}} &= \nest_D = 0 & lct_{\{A,B,C\}} &= lct_{\{B,C\}} = 5 & lct_D &= 10 \\
\end{align*}
\]

\[\text{est}'_D = 3\]

- Must find $\theta^U_\ell \subseteq \omega^U_L$ that yields the strongest update.
For cumulative resources, must consider subsets of ω:

- $\{B, C\}$ not energetic enough to require $\{B, C\} \preceq D$.
- $\{A, B, C\} \preceq D$, and $lct_{A,B,C} \geq lct_{B,C}$,
 - therefore D must end after $lct_{B,C}$.

Must find $\theta_{\ell}^u \subseteq \omega_L^U$ that yields the strongest update.
Impact on Overall Complexity

- For a given U, the minimum slack interval does correctly check the edge-finding condition.
- It does not always find the subset that produces the strongest bound update.
 - [Mercier & Van Hentenryck, 2008]
 - Includes dynamic programming approach with $O(kn^2)$ complexity,
 where k is the number of distinct capacity requirements.
- [Vilím, 2009] shows how to use the Θ-tree method outlined here to find the strongest subset with $O(kn \log n)$ complexity.
 - It is significantly more complicated than what you have seen today.
Definition: Density

- For a task interval θ, the **density** of θ is given by:

$$Dens(\theta) = \frac{energy_\theta}{lct_\theta - est_\theta}$$

- In (most) cases where the interval responsible for the strongest update is not the interval of minimum slack, it is the interval of maximum density.
min slack/max density edge-finding algorithm
[Kameugne et al., 2011]

\[
\begin{align*}
\text{for } U \in T \text{ do} \\
\quad \text{for } i \in T \text{ by decreasing } est_i \text{ do} \\
\quad \quad \text{if } lct_i \leq lct_U \text{ then} \\
\quad \quad \quad \text{if } Dens(\omega^U_i) > Dens(\omega^U_L) \text{ then} \\
\quad \quad \quad \quad L \leftarrow i \\
\quad \quad \quad \text{else} \\
\quad \quad \quad \quad Dupd_i \leftarrow \text{update based on } \omega^U_L \\
\quad \quad \text{for } i \in T \text{ by increasing } est_i \text{ do} \\
\quad \quad \text{if } Slack(\theta^U_i) < Slack(\theta^U_\ell) \text{ then} \\
\quad \quad \quad \ell \leftarrow i \\
\quad \quad \quad \text{if } lct_i > lct_U \text{ then} \\
\quad \quad \quad \quad SLupd_i \leftarrow \text{update based on } \theta^U_\ell \\
\quad \quad \quad \text{if } \theta^U_\ell < i \text{ then} \\
\quad \quad \quad \quad est'_i \leftarrow \max(Dupd_i, SLupd_i)
\end{align*}
\]
A comparison of the algorithms

- $O(n^2)$ does not strictly dominate the $O(kn \log n)$ complexity of Θ-tree edge-finding, especially for low values of k.
 - Since k is bounded by n, Θ-tree complexity varies from $O(n \log n)$ to $O(n^2 \log n)$.

- Furthermore, the maximum density algorithm may not always make the strongest update on the first iteration.
 - If an edge finding update exists, will always make some update.
 - Always makes the strongest update when:
 - $est_\theta \leq est_i$, or
 - $est_i < est_\theta \leq est_\rho$.
 - Number of weaker updates bounded in $O(n)$.

- A form of “lazy” evaluation
 - Makes sense to prune fast, then let a lower complexity propagator run again.
 - With the guarantee that the edge finder can then enforce the stronger update on a later iteration, if necessary.
Outline

1. **What is Scheduling?**
 - Example scheduling problems
 - The general case

2. **Resource Constrained Scheduling**
 - Introduction
 - Global constraint: *cumulative*

3. **Propagation of the cumulative constraint**
 - Time Table
 - Overload Checking
 - Edge-Finding
 - Other *cumulative* propagation algorithms

4. **Conclusion**
Extended edge-finding

- Recall the edge-finding rule:

\[energy_\omega + energy_i > C \cdot (lct_\omega - est_{\omega \cup \{i\}}) \implies \omega < i \]

- In this example
 - no feasible schedule where I starts before 3,
 - but the edge-finding condition is not satisfied for \(\omega = \{G, H\} \) and \(i = I \).

\[est_I = 0 \quad est_{\{G, H\}} = 2 \]

\[lct_I = 10 \]

\[lct_{\{G, H\}} = 4 \]

0 3 6 9
Extended edge-finding

- Recall the edge-finding rule:

\[\text{energy}_\omega + \text{energy}_i > C \cdot (\text{lct}_\omega - \text{est}_\omega \cup \{i\}) \Rightarrow \omega < i \]

- In this example
 - no feasible schedule where I starts before 3,
 - but the edge-finding condition is not satisfied for \(\omega = \{G, H\} \) and \(i = I \).

\[\text{est}_{\{G,H,I\}} = 0 \]

\[lct_I = 10 \]

\[lct_{\{G,H\}} = 4 \]
Extended edge-finding

- Recall the edge-finding rule:

\[\text{energy}_\omega + \text{energy}_i > C \cdot (lct_\omega - \text{est}_\omega \cup \{i\}) \implies \omega < i\]

- In this example
 - no feasible schedule where I starts before 3,
 - but the edge-finding condition is not satisfied for \(\omega = \{G, H\}\) and \(i = I\).

\[\text{est}_{\{G, H, I\}} = 0\]

\[lct_I = 10\]
Extended edge-finding

- Recall the edge-finding rule:

\[energy_\omega + energy_i > C \cdot (lct_\omega - est_\omega \cup \{i\}) \implies \omega < i \]

- In this example
 - no feasible schedule where I starts before 3,
 - but the edge-finding condition is not satisfied for \(\omega = \{G, H\} \) and \(i = I \).

\[est_{\{G,H,I\}} = 0 \]

\[lct_I = 10 \]

\[lct_{\{G,H\}} = 4 \]
Extended edge-finding

- Recall the edge-finding rule:

\[\text{energy}_\omega + \text{energy}_i > C \cdot (\text{lct}_\omega - \text{est}_{\omega \cup \{i\}}) \implies \omega < i \]

- In this example
 - no feasible schedule where \(I \) starts before 3,
 - but the edge-finding condition is not satisfied for \(\omega = \{G, H\} \) and \(i = I \).

\[\text{est}_I = 0 \quad \text{est}_{\{G,H\}} = 2 \]

\[\text{lct}_I = 10 \]

Edge-finding is too loose a relaxation for tasks with an \(\text{est} \) in this range.
Extended edge-finding

The extended edge-finding rule (for $est_i < est_\omega$):

$$energy_\omega + energy_i - use_i(est_\omega - est_i) > C \cdot (lct_\omega - est_\omega \cup \{i\}) \Rightarrow \omega < i$$

Intuition

Split task i into two parts: the largest part that could execute before est_ω, and the remainder. Check the edge-finding condition on ω and the remainder.
Extended edge-finding

The extended edge-finding rule (for $est_i < est_\omega$):

$$energy_\omega + energy_i - \text{use}_i(est_\omega - est_i) > C \cdot (lct_\omega - est_\omega \cup \{i\}) \Rightarrow \omega < i$$

Intuition

Split task i into two parts: the largest part that could execute before est_ω, and the remainder. Check the edge-finding condition on ω and the remainder.
Extended edge-finding

The extended edge-finding rule (for \(est_i < est_\omega \)):

\[
energy_\omega + energy_i - \text{use}_i(\text{est}_\omega - est_i) > C \cdot (\text{lct}_\omega - est_{\omega \cup \{i\}}) \Rightarrow \omega \leq i
\]

\[
est_I = 0 \quad \text{est}_{\{G,H\}} = 2
\]

\[
\text{lct}_I = 10
\]

\[
\text{lct}_{\{G,H\}} = 4
\]

Intuition

Split task \(i \) into two parts: the largest part that could execute before \(est_\omega \), and the remainder. Check the edge-finding condition on \(\omega \) and the remainder.
■ In edge-finding, looking for a task that must come first or last in a set of tasks

■ Not-first/not-last looks for a task that cannot be the first or last in a set
 • There is at least one activity in θ that must be scheduled before (after) i.
 • Requires reasoning on the minimum earliest completion time of any task in θ.
 • A “lazy” $O(n^2 \log n)$ algorithm reported at CP 2010.
Energetic Reasoning

- Substantially stronger filtering than edge-finding or not-first/not-last.
- Considers required energy consumption over various time periods, tries to deduce when a task must be shifted earlier or later.
- Best algorithm is $\mathcal{O}(n^3)$!
 - Is it worth it? Maybe, maybe not.

- More recently, [VILÍM, 2011] presented a “Timetable Edge-Finding” algorithm
 - Required parts plus edge-finding, in $\mathcal{O}(n^2)$ time.
 - Incorporates some deductions made by energetic reasoning.
Further Reading I

Baker K.R., Trietsch D.
Principles of Sequencing and Scheduling.
Comprehensive overview of scheduling, from OR perspective.

Baptiste P., Le Pape C., Nuijten W.P.M.
Constraint-based scheduling: applying constraint programming to scheduling problems.
Algorithms out of date, but remains the most complete reference.

Vilím P.
Edge finding filtering algorithm for discrete cumulative resources in $O(kn \log n)$.
A challenging paper, but a wonderful algorithm (used in the current release of Gecode). Winner, “Best Paper, CP 2009.”.

Scott J.
Filtering Algorithms for Discrete Cumulative Resources.
Details omitted by [Vilím, 2009], plus explanations and corrections.
Further Reading II

Mercier L., Van Hentenryck P.
Edge finding for cumulative scheduling.
More recent algorithms are faster, but this remains the best theoretical discussion.

Kameugne R., Fotso L.P., Scott J., Ngo-Kateu Y.
A quadratic edge-finding filtering algorithm for cumulative resource constraints.
Simpler to implement than \(\Theta \)-tree filtering, and generally faster in practice. Planned for inclusion in the next major release of Gecode.

Vilím P.
Timetable edge finding filtering algorithm for discrete cumulative resources.
Interesting hybrid of edge-finding, time tabling, and parts of energetic reasoning, all in \(\mathcal{O}(n^2) \) time.