Constraint-Based Scheduling

Joseph Scott

Department of Information Technology

Uppsala Unversity

Constraint Programming, HT'13

Outline Scheduling

Propagation

1. What is Scheduling?

Example scheduling problems The general case

2. Resource Constrained Scheduling

Introduction

Global constraint: cumulative

3. Propagation of the cumulative constraint

Time Table

Overload Checking

Edge-Finding

Other *cumulative* propagation algorithms

4. Conclusion

Outline

Examples

General RCSP

Propagatio

Conclus

1. What is Scheduling?

Example scheduling problems

The general case

2. Resource Constrained Scheduling

Introduction

Global constraint: cumulative

3. Propagation of the cumulative constraint

Time Table

Overload Checking

Edge-Finding

Other *cumulative* propagation algorithms

4. Conclusion

RCSP

Examples

From the Modelling lecture:

Example (The Sport Scheduling Problem, SSP)

Find schedule in $Periods \times Weeks \rightarrow Teams \times Teams$ for:

- \blacksquare |Teams| = n
- |Weeks| = n 1
- |Periods| = n/2

subject to the following constraints:

- Each team plays exactly once against each other team.
- Each team plays exactly once per week.
- Each team plays at most twice per period.

Intuitive idea for a matrix model and a solution for n = 8:

- Wk 1 Wk 2 Wk 3 Wk 4 Wk 5 Wk 6 Wk 7
 P 1 1 vs. 2 1 vs. 3 2 vs. 6 3 vs. 5 4 vs. 7 4 vs. 8 5 vs. 8
- P 2 3 vs. 4 2 vs. 8 1 vs. 7 6 vs. 7 6 vs. 8 2 vs. 5 1 vs. 4
- P 3 5 vs. 6 4 vs. 6 3 vs. 8 1 vs. 8 1 vs. 5 3 vs. 7 2 vs. 7
- P 4 7 vs. 8 5 vs. 7 4 vs. 5 2 vs. 4 2 vs. 3 1 vs. 6 3 vs. 6

General RCSP

A different scheduling model

Example (The Job-Shop Scheduling Problem)

- lacktriangleright m machines, each processing one operation at a time
- \blacksquare n jobs, $job_i = \langle op_1^i, op_2^i, \dots, op_m^i \rangle$

a job is a sequence of operations, opⁱ where each:

- executes on a specific machine
- lasts a fixed time
- operation order is fixed: $\prec \ldots \prec op_m^i$

A different scheduling model

Example (The Job-Shop Scheduling Problem)

- m machines, each processing one operation at a time
- lacksquare n jobs, $job_i = \langle op_1^i, op_2^i, \dots, op_m^i \rangle$
 - a job is a sequence of operations, op_j^i where each:
 - executes on a specific machine
 - ► lasts a fixed time
 - operation order is fixed: $\prec \ldots \prec op_m^i$

A different scheduling model

Example (The Job-Shop Scheduling Problem)

- m machines, each processing one operation at a time
- \blacksquare n jobs, $job_i = \langle op_1^i, op_2^i, \dots, op_m^i \rangle$
 - a job is a sequence of operations, op_i^i $a \prec b$ means
 - executes on a specific machine
 - lasts a fixed time

$$a \prec b$$
 means "b cannot start until a ends"

• operation order is fixed: $op_1^i \prec op_2^i \prec \ldots \prec op_m^i$

A different scheduling model

- m machines, each processing one operation at a time
- \blacksquare n jobs, $job_i = \langle op_1^i, op_2^i, \dots, op_m^i \rangle$
 - a job is a sequence of operations, opⁱ_i
 - executes on a specific machine
 - lasts a fixed time

• operation order is fixed: $op_1^i \prec op_2^i \prec \ldots \prec op_m^i$

$$a \prec b$$
 means "b cannot start until a ends"

$$\prec \ldots \prec op_m^i$$

A different scheduling model

Examples General

RCSP

- m machines, each processing one operation at a time
- \blacksquare n jobs, $job_i = \langle op_1^i, op_2^i, \dots, op_m^i \rangle$
 - a job is a sequence of operations, opⁱ_i
 - executes on a specific machine
 - lasts a fixed time

$$a \prec b$$
 means "b cannot start until a ends"

$$. \prec op_m^i$$

• operation order is fixed:
$$op_1^i \prec op_2^i \prec \ldots \prec op_m^i$$

A different scheduling model

- m machines, each processing one operation at a time
- \blacksquare n jobs, $job_i = \langle op_1^i, op_2^i, \dots, op_m^i \rangle$
 - a job is a sequence of operations, opⁱ_i
 - executes on a specific machine
 - lasts a fixed time
 - operation order is fixed: $op_1^i \prec op_2^i \prec \ldots \prec op_m^i$

$$a \prec b$$
 means "b cannot start until a ends"

$$| \prec \ldots \prec op_m^i$$

Scheduling

General

Outline

1. What is Scheduling?

Example scheduling problems

The general case

2. Resource Constrained Scheduling

Introduction

Global constraint: cumulative

3. Propagation of the cumulative constraint

Time Table

Overload Checking

Edge-Finding

Other *cumulative* propagation algorithms

4. Conclusion

What is scheduling? [Baker & Trietsch, 2009]

Outline

Scheduling

General

Given:

- Set of tasks.
- each of some duration,
- sharing one or more finite resources.

Need:

- A feasible execution sequence
- that respects the limitations of the resources.

Additional Constraints:

- precedence: a must finish before b begins

What is scheduling?

[Baker & Trietsch, 2009]

Outline

Scheduling Examples

General

Propagatio

Given:

- Set of tasks,
- · each of some duration,
- sharing one or more finite resources.

Need:

- A feasible execution sequence
- that respects the limitations of the resources.

Additional Constraints:

- precedence: a must finish before b begins
- sequence: task uses several resources in fixed order
- objective: minimize makespan, minimize simultaneous resource usage, etc.

• . .

What is scheduling?

[Baker & Trietsch, 2009]

Outline

Scheduling

General

Given:

- Set of tasks.
- each of some duration,
- sharing one or more finite resources.

Need:

- A feasible execution sequence
- that respects the limitations of the resources.

Additional Constraints:

- precedence: a must finish before b begins
- sequence: task uses several resources in fixed order
- objective: minimize makespan, minimize simultaneous resource usage, etc.

What is \neg (scheduling)?

Outline

Scheduling

General

Propagatio

Topagatio

Sequencing

- relax the condition that tasks have a duration
- Instead of execution times, just compute an ordering.

Planning

- Many possible tasks, must select which ones to execute.
- Goal can be reached by multiple combinations of tasks.
- (Usually) does not consider durations.

Outline

Scheduling

Intro

cumulativ

Propagation

Conclusion

1. What is Scheduling?

Example scheduling problems
The general case

2. Resource Constrained Scheduling

Introduction

Global constraint: cumulative

3. Propagation of the cumulative constraint

Time Table

Overload Checking

Edge-Finding

Other *cumulative* propagation algorithms

4. Conclusion

The Resource Constrained Scheduling Problem (RCSP)

Outline

Scheduling

Intro

- A finite. discrete resource
 - Examples
 - machine with limited processing capacity
 - fixed number of available employees
 - etc
 - Resource is limited, but not consumable
 - capacity limits the number of tasks processed at one time
 - the resource is not depleted over time
- Each task:
 - requires part of the resource's capacity,
 - lasts for some amount of time.
 - has a domain of valid start times.

The Resource Constrained Scheduling Problem (RCSP)

Outline

Scheduling

Intro

cumulativ

Propagatio

- A finite, discrete resource
 - Examples
 - machine with limited processing capacity
 - fixed number of available employees
 - etc.
 - Resource is limited, but not consumable
 - capacity limits the number of tasks processed at one time
 - ▶ the resource is not depleted over time
- Each task:
 - requires part of the resource's capacity,
 - · lasts for some amount of time,
 - has a domain of valid start times.

Intro

Scheduling

Variants of RCSP

Capacity of Resource

disjunctive: only one task executes at a time

 cumulative: resource has a capacity that can never be exceeded

Elasticity of Tasks

Inelastic: duration and resource requirements are fixed

• Elastic: resource usage and/or duration are flexible

Interruptibility of Tasks

Preemptive: tasks may interrupt each other

Non-preemptive: once started, a task continues until completion

Today

non-preemptive, inelastic, cumulative scheduling

Intro

Scheduling

Variants of RCSP

■ Capacity of Resource

disjunctive: only one task executes at a time

 cumulative: resource has a capacity that can never be exceeded

Elasticity of Tasks

Inelastic: duration and resource requirements are fixed

• Elastic: resource usage and/or duration are flexible

Interruptibility of Tasks

Preemptive: tasks may interrupt each other

Non-preemptive: once started, a task continues until completion

Today

non-preemptive, inelastic, cumulative scheduling

Part 1: Tasks

Notation

Specific tasks are written A, B, \ldots , while variables referring to some task are written i, j, \ldots

- Set Tasks of n tasks, where for $i \in Tasks$:
 - fixed resource requirement: use_i
 - fixed duration: dur_i
 - energy: $energy_i = use_i \cdot dur_i$
- \blacksquare One shared resource of constant capacity \mathcal{C} .

- 12 -

Outline Scheduling

Intro

Conclusion

Intro

Scheduling

Conclusion

Notation for cumulative scheduling problems

Part 1: Tasks

Notation

Specific tasks are written A, B, \ldots , while variables referring to some task are written i, j, \ldots

- Set Tasks of n tasks, where for $i \in Tasks$:
 - fixed resource requirement: use_i
 - ullet fixed duration: dur_i
 - energy: $energy_i = use_i \cdot dur_i$
- $lue{}$ One shared resource of constant capacity $\mathcal{C}.$

HT'13

Scheduling

10

Part 1: Tasks

Notation

Specific tasks are written A, B, \ldots , while variables referring to some task are written i, j, \ldots

- Set Tasks of n tasks, where for $i \in Tasks$:
 - fixed resource requirement: use_i
 - fixed duration: dur_i
 - energy: $energy_i = use_i \cdot dur_i$
- lacksquare One shared resource of constant capacity $\mathcal{C}.$

- 12 -

Outline Scheduling

Intro

cumulativ

Propagatio

Conclusion

Part 2: Start Times

lacksquare Task i has interval of feasible start times $start_i$

• bounds: earliest start time (est_i), latest start time (lst_i)

• $start_i \in [est_i...lst_i]$

ullet Prune $start_i$ by strengthening est_i and/or lst_i

 $lacktriangleq dur_i$ is fixed, relates start times to completion times

• latest completion time (lct_i)

Important

Strengthening lct_i is symmetric to strengthening est_i .

Intro

HT'13

Part 2: Start Times

lacksquare Task i has interval of feasible start times $start_i$

• bounds: earliest start time (est_i) , latest start time (lst_i)

• $start_i \in [est_i..lst_i]$

ullet Prune $start_i$ by strengthening est_i and/or lst_i

 $lacktriangleq dur_i$ is fixed, relates start times to completion times

• Latest completion time (lct_i)

Important

Strengthening lct_i is symmetric to strengthening est_i .

- 13 -

Outline Scheduling

RCSP

Intro

cumulativ

Propagatio

Qutline

Scheduling

Intro

cumulative

Propagation

Conclusio

1. What is Scheduling?

Example scheduling problems The general case

2. Resource Constrained Scheduling

Introduction

Global constraint: cumulative

3. Propagation of the cumulative constraint

Time Table

Overload Checking

Edge-Finding

Other *cumulative* propagation algorithms

4. Conclusion

The cumulative constraint

■ Decision variables: $\forall_{i \in Tasks} : start_i$

■ Constraint:

- Time is discrete, not continuous.
- Interested in enforcing bounds consistency only.
- Could decompose this into a series of linear constraints; prefer to use a global constraint to capture the structure of the problem.

Outline Scheduling

Intro

cumulative

Propagatio

Outline

Scheduling

Decree

Time

Table

Overload

Finding

others

1. What is Scheduling?

Example scheduling problems
The general case

2. Resource Constrained Scheduling

ntroduction

Global constraint: cumulative

3. Propagation of the cumulative constraint

Time Table

Overload Checking
Edge-Finding

Other cumulative propagation algorithms

4. Conclusion

Time tabling reasons on required parts

Schedulin

Propagation

Time

Table

Overloa

Edge-Findir

others

Conclusion

What if there is no required part?

Schedulin

Propagation

Time

Table

Overioac

Findin

others

Outline Scheduling

Table Overload

Outline

1. What is Scheduling?

Example scheduling problems The general case

2. Resource Constrained Scheduling

Introduction

Global constraint: cumulative

3. Propagation of the cumulative constraint

Time Table

Overload Checking

Edge-Finding

Other cumulative propagation algorithms

4. Conclusion

others Conclusi

Part 3: Sets of Tasks

Notation

Sets of tasks (e.g., $\{A, B, C\}$) are denoted ω , θ , etc.

■ Raise several of these concepts to apply to sets of tasks

$$est_{\omega} = \min_{i \in \omega} (est_i)$$
 $lct_{\omega} = \max_{i \in \omega} (lct_i)$ $energy_{\omega} = \sum_{i \in \omega} (energy_i)$

$$est_{A,D} = 0$$
 $lct_{A,B,C} = 5$ $lct_{D} = 10$

A

B

 $est_{B,C} = 2$
 $est_{B,C} = 2$
 $lct_{D} = 10$

Outline

Scheduling

Propagatio

Time

Overload

Finding

Conclusio

Part 3: Sets of Tasks

Notation

Sets of tasks (e.g., $\{A, B, C\}$) are denoted ω , θ , etc.

■ Raise several of these concepts to apply to sets of tasks

$$est_{\omega} = \min_{i \in \omega} (est_i)$$
 $lct_{\omega} = \max_{i \in \omega} (lct_i)$ $energy_{\omega} = \sum_{i \in \omega} (energy_i)$

$$est_{\{A,B,C\}} = 0$$
 $lct_{\{A,B,C\}} = 5$ $lct_{D} = 10$

A

B

 $0 est_{D} = 0$
 10

Outline

Scheduling

Propagatio

Time

Overload

Finding others

Conclusi

e-feasibility and overload checking

- What if use_i and dur_i were not fixed, but the energy was?
 - Recall the elastic problem type
 - Same area, different shape
- Overload Rule:

 $\forall \theta \subseteq tasks \colon energy_{\theta} > \mathcal{C}(lct_{\theta} - est_{\theta}) \implies \textbf{Overload}$

■ e-feasible: no overload for any $\theta \subseteq Tasks$

Propagation

Outline

Scheduling

Time Table

Overload

Findin others

Conclusio

Is e-feasibility stronger than time tabling?

Overload

5

 $lct_{\{A,B\}} = 4$

- 22 -J. Scott

Is time tabling stronger than e-feasibility?

Outline

Scheduling

RCSP

Time Table

Overload

Edge-Finding others

Conclusio

A trivial overload, not e-feasible, but ignored by time tabling.

Is time tabling stronger than e-feasibility?

Outline

Scheduling

Propagatio Time

Table Overload

Edge-Finding others

Conclusio

A trivial overload, not e-feasible, ut ignored by time tabling

Is time tabling stronger than e-feasibility?

Outline

Scheduling

Propagatio Time Table

Overload

Edge-Finding others

Conclusio

A trivial overload, not e-feasible, but ignored by time tabling.

How do we make an effective propagator for cumulative?

■ time table and e-feasibility miss different overload conditions

 time table considers tasks exactly, but in isolation

 e-feasibility considers tasks in combination, but approximately

A cumulative propagator should consider both

Most common solution:

• Run several different propagation algorithms in sequence

 Gecode's cumulative: time table, overload checking, plus edge-finding...

Outline

Scheduling

Propagation

Table Overload

Finding others

Conclusio

Outline

Scheduling

Table

Overload

Edge-Finding

others

1. What is Scheduling?

Example scheduling problems The general case

2. Resource Constrained Scheduling

Introduction

Global constraint: cumulative

3. Propagation of the cumulative constraint

Time Table

Overload Checking

Edge-Finding

Other cumulative propagation algorithms

4. Conclusion

Improving on overload checking

extend the idea of e-feasibility:

1 Start with a set of tasks that is e-feasible.

2 Add another task with overlapping start times.

3 Limit the new task to the domain of the set, and check for e-feasibility again.

4 If the new set is infeasible, prune the domain of the new task.

 Basis for a set of filtering algorithms used to propagate cumulative:

edge-finding

extended edge-finding

not-first/not-last

timetable edge-finding

Outline

Scheduling

Propagatio

Table

Overload Edge-

Finding

Conclusio

Table

Edge-

Finding

Scheduling

Edge-finding: deducing new precedence relations

- Given a set of tasks, determine one task such that:
 - for every feasible solution,
 - that task must come first (or last).
- Is there a feasible schedule in which $\omega = \{A, B, C\}$ and D both end by lct_{ω} ?
 - If not, D must end after lct_{ω} .

$$energy_{\omega} + energy_{D} > \mathcal{C} \cdot (lct_{\omega} - est_{\omega \cup \{D\}}) \implies \boxed{\omega \triangleleft D}$$

^{*}Running example due to [VILÍM, 2009]
Scheduling - 27 -

Table Overload Edge-

Finding

Scheduling

Edge-finding: deducing new precedence relations

- Given a set of tasks, determine one task such that:
 - for every feasible solution,
 - that task must come first (or last).
- Is there a feasible schedule in which $\omega = \{A, B, C\}$ and D both end by lct_{ω} ?
 - If not, D must end after lct_{ω} .

$$energy_{\omega} + energy_{D} > \mathcal{C} \cdot (lct_{\omega} - est_{\omega \cup \{D\}}) \implies \omega \triangleleft D$$

Scheduling

Propagation

Table Overload

Edge-

Finding

Edge-finding: deducing new precedence relations

- Given a set of tasks, determine one task such that:
 - for every feasible solution,
 - that task must come first (or last).
- \blacksquare Is there a feasible schedule in which $\omega = \{A, B, C\}$ and D both end by lct_{ω} ?
 - If not, D must end after lct_{ω} .

$$energy_{\omega} + energy_{D} > \mathcal{C} \cdot (lct_{\omega} - est_{\omega \cup \{D\}}) \implies \omega \triangleleft D$$

"D ends after the end of all tasks in ω "

^{*}Running example due to [VILÍM, 2009] Scheduling

How much can the bound be updated?

- Consider $energy_{\omega}$ in two parts:
 - energy which may be scheduled without affecting D,
 - and the *rest*, which *must* affect D.

$$est^{\gamma}_{i} \geq est_{\omega} + \left\lceil rac{rest(\omega, use_{i})}{use_{i}}
ight
ceil$$

$$rest(\omega, use_i) = \begin{cases} energy_{\omega} - (\mathcal{C} - use_i)(lct_{\omega} - est_{\omega}) & \text{if } \omega \neq \emptyset \\ 0 & \text{otherwise} \end{cases}$$

Outline

Scheduling

Propagation

Time Table

Overload

Edge-Finding

others

Conclusio

How much can the bound be updated?

- Consider $energy_{\omega}$ in two parts:
 - energy which may be scheduled without affecting D,
 - and the *rest*, which *must* affect D.

$$egin{aligned} est^{i}_{i} \geq est_{\omega} + \left\lceil rac{rest(\omega, use_{i})}{use_{i}}
ight
ceil \end{aligned}$$

$$\underbrace{rest(\omega, use_i)}_{} = \begin{cases} energy_{\omega} - \underbrace{(\mathcal{C} - use_i)(lct_{\omega} - est_{\omega})}_{} & \text{if } \omega \neq \emptyset \\ 0 & \text{otherwise} \end{cases}$$

Outline

Scheduling

Propagation

Time

Table Overload

Edge-Finding

others

Conclusio

How much can the bound be updated?

- Consider $energy_{\omega}$ in two parts:
 - energy which may be scheduled without affecting D,
 - and the *rest*, which *must* affect D.

$$est'_i \ge est_\omega + \left\lceil \frac{rest(\omega, use_i)}{use_i} \right\rceil$$

$$\underbrace{rest(\omega, use_i)}_{} = \begin{cases} energy_{\omega} - \underbrace{(\mathcal{C} - use_i)(lct_{\omega} - est_{\omega})}_{} & \text{if } \omega \neq \emptyset \\ 0 & \text{otherwise} \end{cases}$$

Outline Scheduling

Propagation

Table Overload Edge-

Finding

Scheduling

Propagation Time Table

Overload Edge-Finding

Minimum Slack

 \blacksquare Slack measures the capacity not used by a task set ω

$$\omega = \{A,B,C\}$$

 $Slack(\omega) = \mathcal{C}(lct_{\omega} - est_{\omega}) - e_{\omega}$

■ If $energy_i > Slack(\omega)$, then part of i falls outside $[est_{\omega}..let_{\omega}]$

Conjecture

For a fixed est and lct, the set of tasks with the minimum slack is the most likely to conflict with the scheduling of other tasks.

Task Intervals

■ There are only $\mathcal{O}(n)$ meaningful values for each bound

■ Task intervals: sets of tasks, bounded by tasks

$$\omega_L^U = \{ i \in T \mid est_i \ge est_L \land lct_i \le lct_U \}$$

- $\bullet \omega_A^B = \{A, B, C\}$
- Removing task *C* reduces the energy, but not the available capacity

Outline

Scheduling

Propagatio

Table Overload

Edge-Finding

others

Task Intervals

■ There are only $\mathcal{O}(n)$ meaningful values for each bound

■ Task intervals: sets of tasks, bounded by tasks

$$\omega_L^U = \{ i \in T \mid est_i \ge est_L \land lct_i \le lct_U \}$$

- $\bullet \omega_A^B = \{A, B, C\}$
- lacktriangle Removing task C reduces the energy, but not the available capacity

Outline

Scheduling

Propagation

Table Overload

Edge-Finding

others

Table

Edge-

Finding

Overload

Scheduling

Using intervals to perform edge-finding [Baptiste et al., 2001]

■ General task interval based edge-finding algorithm:

```
\begin{array}{l} \text{for every upper bound } U \in T \text{ do} \\ \text{for every task } i \in T \text{ by decreasing } est_i \text{ do} \\ \text{if } lct_i \leq lct_U \text{ then} \\ \text{if } Slack(\omega_i^U) < Slack(\omega_L^U) \text{ then} \\ L \leftarrow i \\ \text{else} \\ \text{if } \omega_L^U \lessdot i \text{ then} \\ est_i = \text{update based on } \omega_L^U \end{array}
```

- Two problems:
 - Computing the update to est_i is (generally) not $\mathcal{O}(n)$.
 - The minimum slack interval is not always the best interval.

Table

Edge-

Finding

Overload

Scheduling

Using intervals to perform edge-finding [Baptiste et al., 2001]

■ General task interval based edge-finding algorithm:

```
\begin{array}{l} \text{for every upper bound } U \in T \text{ do} \\ \text{for every task } i \in T \text{ by decreasing } est_i \text{ do} \\ \text{if } lct_i \leq lct_U \text{ then} \\ \\ \text{if } Slack(\omega_i^U) < Slack(\omega_L^U) \text{ then} \\ \\ L \leftarrow i \\ \text{else} \\ \text{if } \omega_L^U \lessdot i \text{ then} \\ \\ est_i = \text{update based on } \omega_L^U \longleftarrow \\ \end{array}
```

- Two problems:
 - Computing the update to est_i is (generally) not $\mathcal{O}(n)$.
 - The minimum slack interval is not always the best interval.

Table

Edge-

Finding

Overload

Scheduling

Using intervals to perform edge-finding [Baptiste et al., 2001]

General task interval based edge-finding algorithm:

```
\begin{array}{l} \mbox{for every upper bound } U \in T \mbox{ do} \\ \mbox{for every task } i \in T \mbox{ by decreasing } est_i \mbox{ do} \\ \mbox{if } lct_i \leq lct_U \mbox{ then} \\ \mbox{if } Slack(\omega_i^U) < Slack(\omega_L^U) \mbox{ then} \\ L \leftarrow i \\ \mbox{else} \\ \mbox{if } \omega_L^U \leqslant i \mbox{ then} \\ \mbox{} est_i = \mbox{ update based on } \omega_L^U \end{array}
```

- Two problems:
 - Computing the update to est_i is (generally) not $\mathcal{O}(n)$.
 - The minimum slack interval is not always the best interval.

⊖-trees for Edge-Finding [Vilím, 2009]

increasing est —

Finding others

Table Overload Edge-

Conclusion

- Arrange all tasks as the leaves of a balanced, binary tree.
 - Sorted by increasing *est*.
- Let U be the task with the largest lct
 - Notice: for any L, the interval ω_L^U is all tasks to the right.

⊖-trees for Edge-Finding [Vilím, 2009]

Outline

Scheduling

Propagation

Time Table

Overload

Edge-Finding

others

Conclusion

- Arrange all tasks as the leaves of a balanced, binary tree.
 - Sorted by increasing est.
- Let U be the task with the largest lct
 - Notice: for any L, the interval ω_L^U is all tasks to the right.

⊖-trees for Edge-Finding [Vilím, 2009]

Outline

Scheduling

Propagation

Table Overload

Edge-Finding

others

- Goal: use interior nodes to compute the minimum slack of any subset of tasks in that node's subtree
 - Find the best lower bound, L, for the current upper bound, U.
- Minimum slack set is always a task interval, so only two choices for each node:
 - minimum slack set of right child, or
 - minimum slack of left child, and all tasks under right child.

Minimum Slack Becomes Energy Envelope

Outline

Scheduling

Propagatio

Table Overload

Edge-

Finding others

Conclusion

■ Rewrite the edge-finding rule:

$$\underbrace{ \begin{array}{c} energy_{\theta \cup \{i\}} > \mathcal{C}(lct_{\theta} - est_{\theta \cup \{i\}}) \implies \theta \lessdot i \\ \\ \underbrace{\mathcal{C} \cdot est_{\theta \cup \{i\}} + energy_{\theta \cup \{i\}}}_{Env_{\theta \cup \{i\}}} > \mathcal{C} \cdot lct_{\theta} \implies \theta \lessdot i \end{array}}_{}$$

■ Can compute the energy envelope of a node v (Env_v) by comparing child nodes, ℓ and r:

$$Env_v = \begin{cases} \mathcal{C} \cdot est_x + energy_x & \text{if } v \text{ is a leaf, for task } \\ \max\{Env_r, Env_\ell + energy_r\} & \text{if } v \text{ is not a leaf} \end{cases}$$

$$energy_v = \begin{cases} energy_x & \text{if } v \text{ is a leaf, for task } x \\ energy_r + energy_\ell & \text{if } v \text{ is not a leaf} \end{cases}$$

- 34 -

■ Maximizing energy envelope = minimizing slack

Tree Structure Allows for Efficient Recomputation

Edge-Finding others

Table Overload

Conclusio

- So far, the tree requires more work, not less!
- Make U a zero-energy task, then recompute $\mathcal{O}(\log n)$ ancestor nodes.
- \blacksquare n upper bounds, so $\mathcal{O}(n\log n)$ to check them all.
 - Unfortunately, that only holds for unary resources. . .

Tree Structure Allows for Efficient Recomputation

Propagatio Time Table

Outline Scheduling

Overload Edge-

Finding others

Conclusio

- So far, the tree requires more work, not less!
- Make U a zero-energy task, then recompute $\mathcal{O}(\log n)$ ancestor nodes.
- lacksquare n upper bounds, so $\mathcal{O}(n\log n)$ to check them all.

Tree Structure Allows for Efficient Recomputation

- Outline
- Scheduling
- Propagatio Time
- Table
 Overload
 Edge-
- Finding
- others

- So far, the tree requires more work, not less!
- Make U a zero-energy task, then recompute $\mathcal{O}(\log n)$ ancestor nodes.
- n upper bounds, so $\mathcal{O}(n \log n)$ to check them all.
 - Unfortunately, that only holds for unary resources. . .

Tree Structure Allows for Efficient Recomputation

Outline

Scheduling

Propagatio Time

Table Overload

Edge-Finding

others

- So far, the tree requires more work, not less!
- Make U a zero-energy task, then recompute $\mathcal{O}(\log n)$ ancestor nodes.
- \blacksquare n upper bounds, so $\mathcal{O}(n\log n)$ to check them all.
 - Unfortunately, that only holds for unary resources. . .

• $\{B,C\}$ not energetic enough to require $\{B,C\} \lessdot D$.

 \blacksquare $\{A,B,C\} \lessdot D$, and $lct_{A,B,C} \geq lct_{B,C}$,

• therefore D must end after $lct_{B,C}$.

■ Must find $\theta^u_\ell \subseteq \omega^U_L$ that yields the strongest update.

Outline Scheduling

RCSP

Time Table

Overload Edge-

Finding

• $\{B,C\}$ not energetic enough to require $\{B,C\} \lessdot D$.

 \blacksquare $\{A, B, C\} \lessdot D$, and $lct_{A,B,C} \geq lct_{B,C}$,

• therefore D must end after $lct_{B,C}$.

■ Must find $\theta^u_\ell \subseteq \omega^U_L$ that yields the strongest update.

Outline Scheduling

RCSP

Time Table

Overload Edge-

Finding

Conclusio

- $\{B,C\}$ not energetic enough to require $\{B,C\} \lessdot D$.
- \blacksquare $\{A,B,C\} \lessdot D$, and $lct_{A,B,C} \geq lct_{B,C}$,
 - therefore D must end after $lct_{B,C}$.

■ Must find $\theta^u_\ell \subseteq \omega^U_L$ that yields the strongest update.

Outline Scheduling

RCSP

Time Table

Overload Edge-

Finding

Canalusi

- $\{B,C\}$ not energetic enough to require $\{B,C\} \lessdot D$.
- \blacksquare $\{A,B,C\} \lessdot D$, and $lct_{A,B,C} \geq lct_{B,C}$,
 - therefore D must end after $lct_{B,C}$.

■ Must find $\theta^u_\ell \subseteq \omega^U_L$ that yields the strongest update.

Outline Scheduling

RCSP

Time Table

Overload Edge-

Finding

others

- \blacksquare $\{B,C\}$ not energetic enough to require $\{B,C\} \lessdot D$.
- $lacksquare \{A,B,C\}\lessdot D$, and $lct_{A,B,C}\geq lct_{B,C}$,
 - therefore D must end after $lct_{B,C}$.

■ Must find $\theta^u_\ell \subseteq \omega^U_L$ that yields the strongest update.

Outline Scheduling

Propagatio

Time Table Overload

Edge-Finding

others

HT'13

Impact on Overall Complexity

Outline

Scheduling

Propagation

Table Overload

Edge-Finding

others

■ For a given *U*, the minimum slack interval does correctly check the edge-finding condition.

- It does not always find the subset that produces the strongest bound update.
 - [Mercier & Van Hentenryck, 2008]
 - Includes dynamic programming approach with $\mathcal{O}(kn^2)$ complexity,
 - where k is the number of distinct capacity requirements.
- [VILÍM, 2009] shows how to use the Θ -tree method outlined here to find the strongest subset with $\mathcal{O}(kn\log n)$ complexity.
 - It is significantly more complicated than what you have seen today.

Definition: Density

■ For a task interval θ , the density of θ is given by:

$$Dens(\theta) = \frac{energy_{\theta}}{lct_{\theta} - est_{\theta}}$$

In (most) cases where the interval responsible for the strongest update is not the interval of minimum slack, it is the interval of maximum density.

Outline Scheduling

Propagation Time

Table Overload

Edge-Finding

Others

min slack/max density edge-finding algorithm [Kameugne et al., 2011]

```
Outline
Scheduling
```

for $U \in T$ do

Propagatio

Table

Overload

Edge-Finding

otners

```
for i \in T by decreasing est_i do
      if lct_i \leq lct_U then
            if Dens(\omega_i^U) > Dens(\omega_I^U) then
                  L \leftarrow i
      else
            Dupd_i \leftarrow \text{update based on } \omega_I^U
for i \in T by increasing est_i do
      if Slack(\theta_i^U) < Slack(\theta_\ell^U) then
            \ell \leftarrow i
      if lct_i > lct_U then
            SLupd_i \leftarrow \text{update based on } \theta^U
            if \theta_{\ell}^{U} \lessdot i then
                  est'_i \leftarrow \max(Dupd_i, SLupd_i)
```


A comparison of the algorithms

■ $\mathcal{O}(n^2)$ does not strictly dominate the $\mathcal{O}(kn\log n)$ complexity of Θ -tree edge-finding, especially for low values of k.

• Since k is bounded by n, Θ -tree complexity varies from $\mathcal{O}(n \log n)$ to $\mathcal{O}(n^2 \log n)$.

■ Furthermore, the maximum density algorithm may not always make the strongest update on the first iteration.

 If an edge finding update exists, will always make some update.

Always makes the strongest update when:

- $ightharpoonup est_{\theta} \leq est_{i}$, or
- $ightharpoonup est_i < est_{\theta} \leq est_{\rho}.$
- Number of weaker updates bounded in $\mathcal{O}(n)$.
- A form of "lazy" evaluation
 - Makes sense to prune fast, then let a lower complexity propagator run again.
 - With the guarantee that the edge finder can then enforce the stronger update on a later iteration, if necessary.

Outline Scheduling

Table

Edge-

Finding others

Overload

Outline

Scheduling

Propagatio

T:---

Table

Overload

Findir

others

1. What is Scheduling?

Example scheduling problems

The general case

2. Resource Constrained Scheduling

Introduction

Global constraint: cumulative

3. Propagation of the cumulative constraint

Time Table

Overload Checking

Edge-Finding

Other cumulative propagation algorithms

4. Conclusion

■ Recall the edge-finding rule:

$$energy_{\omega} + energy_i > \mathcal{C} \cdot (lct_{\omega} - est_{\omega \cup \{i\}}) \implies \omega \lessdot i$$

- In this example
 - no feasible schedule where I starts before 3,
 - but the edge-finding condition is not satisfied for $\omega = \{G,H\}$ and i=I.

Outline

Scheduling

Propagatio

Time Table

Overload

Edge

Findi

others

Recall the edge-finding rule:

$$energy_{\omega} + energy_i > \left[\mathcal{C} \cdot (lct_{\omega} - est_{\omega \cup \{i\}}) \right] \implies \omega \lessdot i$$

- In this example
 - no feasible schedule where I starts before 3,
 - but the edge-finding condition is not satisfied for $\omega = \{G,H\}$ and i=I.

 $est_{\{G,H,I\}} = 0$ $lct_{I} = 10$ $lct_{I} = 10$

Outline

Scheduling

Propagatio

Time

Overloa

Edge-Finding

others

Conclusio

■ Recall the edge-finding rule:

$$energy_{\omega} + energy_i > \left[\mathcal{C} \cdot (lct_{\omega} - est_{\omega \cup \{i\}}) \right] \implies \omega \lessdot i$$

- In this example
 - no feasible schedule where I starts before 3,
 - but the edge-finding condition is not satisfied for $\omega = \{G,H\}$ and i=I.

Outline

Scheduling

Propagatio

Time Table

Overloa

Edge-Findir

others

Recall the edge-finding rule:

$$energy_{\omega} + energy_i > \left[\mathcal{C} \cdot (lct_{\omega} - est_{\omega \cup \{i\}}) \right] \implies \omega \lessdot i$$

- In this example
 - no feasible schedule where I starts before 3,
 - but the edge-finding condition is not satisfied for $\omega = \{G,H\}$ and i=I.

Outline Scheduling

Table

Finding others

HT'13

■ Recall the edge-finding rule:

$$energy_{\omega} + energy_i > \mathcal{C} \cdot (lct_{\omega} - est_{\omega \cup \{i\}}) \implies \omega \lessdot i$$

- In this example
 - no feasible schedule where I starts before 3,
 - but the edge-finding condition is not satisfied for $\omega = \{G,H\}$ and i=I.

Edge-finding is too loose a relaxation for tasks with an est in this range.

Outline Scheduling

Table Overload

Finding others

HT'13

Table Overload

others

Extended edge-finding

The extended edge-finding rule (for $est_i < est_{\omega}$):

$$energy_{\omega} + energy_i - \underbrace{use_i(est_{\omega} - est_i)} > \boxed{\mathcal{C} \cdot (lct_{\omega} - est_{\omega \cup \{i\}})} \Rightarrow \omega \lessdot i$$

Intuition

Split task i into two parts: the largest part that could execute before est_{ω} , and the remainder. Check the edge-finding condition on ω and the remainder.

Table Overload

others

Extended edge-finding

The extended edge-finding rule (for $est_i < est_{\omega}$):

$$energy_{\pmb{\omega}} + energy_i - \underbrace{ use_i(est_{\pmb{\omega}} - est_i) } > \underbrace{ \mathcal{C} \cdot (lct_{\pmb{\omega}} - est_{\pmb{\omega} \cup \{i\}}) } \Rightarrow \omega \lessdot i$$

Intuition

Split task i into two parts: the largest part that could execute before est_{ω} , and the remainder. Check the edge-finding condition on ω and the remainder.

Table

Finding

Extended edge-finding

The extended edge-finding rule (for $est_i < est_{\omega}$):

$$energy_{\omega} + energy_i - \underbrace{use_i(est_{\omega} - est_i)} > \underbrace{\mathcal{C} \cdot (lct_{\omega} - est_{\omega \cup \{i\}})} \Rightarrow \omega \lessdot i$$

Intuition

Split task i into two parts: the largest part that could execute before est_{ω} , and the remainder. Check the edge-finding condition on ω and the remainder.

Not-first/not-last

Outline

Scheduling

Propagatio

Topagatic

Table

Overload Edge-

Finding

others

C l

In edge-finding, looking for a task that must come first or last in a set of tasks

- Not-first/not-last looks for a task that cannot be the first or last in a set
 - There is at least one activity in θ that must be scheduled before (after) i.
 - Requires reasoning on the minimum earliest completion time of any task in θ .
 - A "lazy" $\mathcal{O}(n^2 \log n)$ algorithm reported at CP 2010.

Energetic Reasoning

Outline

Scheduling

Propagation Time

> Table Overload

Edge-Finding

others

- Substantially stronger filtering than edge-finding or not-first/not-last.
- Considers required energy consumption over various time periods, tries to deduce when a task must be shifted earlier or later.
- Best algorithm is $\mathcal{O}(n^3)$!
 - Is it worth it? Maybe, maybe not.
- More recently, [VILÍM, 2011] presented a "Timetable Edge-Finding" algorithm
 - Required parts plus edge-finding, in $\mathcal{O}(n^2)$ time.
 - Incorporates some deductions made by energetic reasoning.

Scheduling

Conclusion

Further Reading I

Baker K.R., Trietsch D.

Principles of Sequencing and Scheduling.

John Wiley & Sons, Hoboken, New Jersey (2009).

Comprehensive overview of scheduling, from OR perspective.

Baptiste P., Le Pape C., Nuijten W.P.M.

Constraint-based scheduling: applying constraint programming to scheduling problems.

Springer, Berlin / Heidelberg (2001).

Algorithms out of date, but remains the most complete reference.

Vilím P.

Edge finding filtering algorithm for discrete cumulative resources in $O(kn \log n)$.

Gent I.P., ed., CP 2009, LNCS, vol. 5732. Springer (2009).

A challenging paper, but a wonderful algorithm (used in the current release of Gecode). Winner, "Best Paper, CP 2009.".

Scott J.

Filtering Algorithms for Discrete Cumulative Resources. Master's thesis, Uppsala University (2010).

Details omitted by [VILÍM, 2009], plus explanations and corrections.

Scheduling

Conclusion

Further Reading II

Mercier L., Van Hentenryck P.

Edge finding for cumulative scheduling. *INFORMS Journal on Computing*, 20:143 (2008).

More recent algorithms are faster, but this remains the best theoretical discussion.

Kameugne R., Fotso L.P., Scott J., Ngo-Kateu Y.

A quadratic edge-finding filtering algorithm for cumulative resource constraints.

Lee J.H.M., ed., *CP 2011*, *LNCS*, vol. 6876. Springer (2011).

Simpler to implement than Θ -tree filtering, and generally faster in practice. Planned for inclusion in the next major release of Gecode.

Vilím P.

Timetable edge finding filtering algorithm for discrete cumulative resources.

Achterberg T., Beck J.C., eds., *CPAIOR 2011*, *LNCS*, vol. 6697, pp. 230–245. Springer (2011).

Interesting hybrid of edge-finding, time tabling, and parts of energetic reasoning, all in $\mathcal{O}(n^2)$ time.