Validated Numerics
 a short introduction to rigorous computations

Warwick Tucker
The CAPA group
Department of Mathematics
Uppsala University, Sweden

Are floating point computations reliable?

Computing with the C/C++ single format

Are floating point computations reliable?

Computing with the C/C++ single format
Example 1: Repeated addition

$$
\begin{aligned}
& \sum_{i=1}^{10^{3}}\left\langle 10^{-3}\right\rangle=0.999990701675415 \\
& \sum_{i=1}^{10^{4}}\left\langle 10^{-4}\right\rangle=1.000053524971008
\end{aligned}
$$

Are floating point computations reliable?

Computing with the C/C++ single format

Example 1: Repeated addition

$$
\begin{aligned}
& \sum_{i=1}^{10^{3}}\left\langle 10^{-3}\right\rangle=0.999990701675415 \\
& \sum_{i=1}^{10^{4}}\left\langle 10^{-4}\right\rangle=1.000053524971008
\end{aligned}
$$

Example 2: Order of summation

$$
\begin{aligned}
& 1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{10^{6}}=14.357357 \\
& \frac{1}{10^{6}}+\cdots+\frac{1}{3}+\frac{1}{2}+1=14.392651
\end{aligned}
$$

Are floating point computations reliable?

Given the point $(x, y)=(77617,33096)$, evaluate the function

$$
f(x, y)=333.75 y^{6}+x^{2}\left(11 x^{2} y^{2}-y^{6}-121 y^{4}-2\right)+5.5 y^{8}+x /(2 y)
$$

Are floating point computations reliable?

Given the point $(x, y)=(77617,33096)$, evaluate the function

$$
f(x, y)=333.75 y^{6}+x^{2}\left(11 x^{2} y^{2}-y^{6}-121 y^{4}-2\right)+5.5 y^{8}+x /(2 y)
$$

IBM S/370 $(\beta=16)$ with FORTRAN:

type	p	$f(x, y)$
REAL*4	24	$1.172603 \ldots$
REAL*8	53	$1.1726039400531 \ldots$
REAL*10	64	$1.172603940053178 \ldots$

Are floating point computations reliable?

Given the point $(x, y)=(77617,33096)$, evaluate the function

$$
f(x, y)=333.75 y^{6}+x^{2}\left(11 x^{2} y^{2}-y^{6}-121 y^{4}-2\right)+5.5 y^{8}+x /(2 y)
$$

IBM S/370 $(\beta=16)$ with FORTRAN:

type	p	$f(x, y)$
REAL*4	24	$1.172603 \ldots$
REAL*8	53	$1.1726039400531 \ldots$
REAL $* 10$	64	$1.172603940053178 \ldots$

Pentium III $(\beta=2)$ with $C / C++(\mathrm{gcc} / \mathrm{g}++)$:

type	p	$f(x, y)$
float	24	178702833214061281280
double	53	178702833214061281280
long double	64	178702833214061281280

Are floating point computations reliable?

Given the point $(x, y)=(77617,33096)$, evaluate the function

$$
f(x, y)=333.75 y^{6}+x^{2}\left(11 x^{2} y^{2}-y^{6}-121 y^{4}-2\right)+5.5 y^{8}+x /(2 y)
$$

IBM S/370 $(\beta=16)$ with FORTRAN:

type	p	$f(x, y)$
REAL*4	24	$1.172603 \ldots$
REAL*8	53	$1.1726039400531 \ldots$
REAL*10	64	$1.172603940053178 \ldots$

Pentium III $(\beta=2)$ with $C / C++(\mathrm{gcc} / \mathrm{g}++)$:

type	p	$f(x, y)$
float	24	178702833214061281280
double	53	178702833214061281280
long double	64	178702833214061281280

Correct answer: $-0.8273960599 \ldots$

Round each partial result both ways

If $x, y \in \mathbb{F}$ and $\star \in\{+,-, \times, \div\}$, we can enclose the exact result in an interval:

$$
x \star y \in[\nabla(x \star y), \Delta(x \star y)] .
$$

Round each partial result both ways

If $x, y \in \mathbb{F}$ and $\star \in\{+,-, \times, \div\}$, we can enclose the exact result in an interval:

$$
x \star y \in[\nabla(x \star y), \Delta(x \star y)] .
$$

Since all (modern) computers round with maximal quality, the interval is the smallest one that contains the exact result.

Round each partial result both ways

If $x, y \in \mathbb{F}$ and $\star \in\{+,-, \times, \div\}$, we can enclose the exact result in an interval:

$$
x \star y \in[\nabla(x \star y), \Delta(x \star y)] .
$$

Since all (modern) computers round with maximal quality, the interval is the smallest one that contains the exact result.

Question

How do we compute with intervals? And why, really?

Arithmetic over $\mathbb{R} \mathbb{R}$

Definition

If \star is one of the operators,,$+- \times, \div$, and if $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}$, then

$$
\boldsymbol{a} \star \boldsymbol{b}=\{a \star b: a \in \boldsymbol{a}, b \in \boldsymbol{b}\}
$$

except that $\boldsymbol{a} \div \boldsymbol{b}$ is undefined if $0 \in \boldsymbol{b}$.

Arithmetic over \mathbb{R}

Definition

If \star is one of the operators,,$+- \times, \div$, and if $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}$, then

$$
\boldsymbol{a} \star \boldsymbol{b}=\{a \star b: a \in \boldsymbol{a}, b \in \boldsymbol{b}\}
$$

except that $\boldsymbol{a} \div \boldsymbol{b}$ is undefined if $0 \in \boldsymbol{b}$.

Simple arithmetic

$$
\begin{aligned}
& \boldsymbol{a}+\boldsymbol{b}=[\underline{a}+\underline{b}, \overline{\boldsymbol{a}}+\overline{\boldsymbol{b}}] \\
& \boldsymbol{a}-\boldsymbol{b}=[\underline{\boldsymbol{a}}-\overline{\boldsymbol{b}}, \overline{\boldsymbol{a}}-\underline{\boldsymbol{b}}] \\
& \boldsymbol{a} \times \boldsymbol{b}=[\min \{\underline{\boldsymbol{a} b}, \underline{\boldsymbol{a}} \overline{\boldsymbol{b}}, \overline{\boldsymbol{a}} \underline{\underline{b}}, \overline{\boldsymbol{a}} \overline{\boldsymbol{b}}\}, \max \{\underline{\boldsymbol{a} b}, \underline{\boldsymbol{a}} \overline{\boldsymbol{b}}, \overline{\boldsymbol{a}} \underline{\boldsymbol{b}}, \overline{\boldsymbol{a}} \overline{\boldsymbol{b}}\}] \\
& \boldsymbol{a} \div \boldsymbol{b}=\boldsymbol{a} \times[1 / \overline{\boldsymbol{b}}, 1 / \underline{\boldsymbol{b}}], \quad \text { if } 0 \notin \boldsymbol{b} .
\end{aligned}
$$

Arithmetic over \mathbb{R}

Definition

If \star is one of the operators,,$+- \times, \div$, and if $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}$, then

$$
\boldsymbol{a} \star \boldsymbol{b}=\{a \star b: a \in \boldsymbol{a}, b \in \boldsymbol{b}\}
$$

except that $\boldsymbol{a} \div \boldsymbol{b}$ is undefined if $0 \in \boldsymbol{b}$.

Simple arithmetic

$$
\begin{aligned}
& \boldsymbol{a}+\boldsymbol{b}=[\underline{a}+\underline{b}, \overline{\boldsymbol{a}}+\overline{\boldsymbol{b}}] \\
& \boldsymbol{a}-\boldsymbol{b}=[\underline{\boldsymbol{a}}-\overline{\boldsymbol{b}}, \overline{\boldsymbol{a}}-\underline{\boldsymbol{b}}] \\
& \boldsymbol{a} \times \boldsymbol{b}=[\min \{\underline{\boldsymbol{a} b}, \underline{\boldsymbol{a}} \overline{\boldsymbol{b}}, \overline{\boldsymbol{a}} \underline{\underline{b}}, \overline{\boldsymbol{a}} \overline{\boldsymbol{b}}\}, \max \{\underline{\boldsymbol{a} b}, \underline{\boldsymbol{a}} \overline{\boldsymbol{b}}, \overline{\boldsymbol{a}} \underline{\boldsymbol{b}}, \overline{\boldsymbol{a}} \overline{\boldsymbol{b}}\}] \\
& \boldsymbol{a} \div \boldsymbol{b}=\boldsymbol{a} \times[1 / \overline{\boldsymbol{b}}, 1 / \underline{\boldsymbol{b}}], \quad \text { if } 0 \notin \boldsymbol{b} .
\end{aligned}
$$

On a computer we use directed rounding, e.g.

$$
\boldsymbol{a}+\boldsymbol{b}=[\nabla(\underline{\boldsymbol{a}} \oplus \underline{\boldsymbol{b}}), \triangle(\overline{\boldsymbol{a}} \oplus \overline{\boldsymbol{b}})] .
$$

Range enclosure
Extend a real-valued function f to an interval-valued F :

$$
R(f ; \boldsymbol{x})=\{f(x): x \in \boldsymbol{x}\} \subseteq F(\boldsymbol{x})
$$

Range enclosure

Extend a real-valued function f to an interval-valued F :

$$
R(f ; \boldsymbol{x})=\{f(x): x \in \boldsymbol{x}\} \subseteq F(\boldsymbol{x})
$$

Interval-valued functions

Range enclosure

Extend a real-valued function f to an interval-valued F :

$$
R(f ; \boldsymbol{x})=\{f(x): x \in \boldsymbol{x}\} \subseteq F(\boldsymbol{x})
$$

$y \notin F(\boldsymbol{x})$ implies that $f(x) \neq y$ for all $x \in \boldsymbol{x}$.

Interval-valued functions

Some explicit formulas are given below:

Interval-valued functions

Some explicit formulas are given below:

$e^{\boldsymbol{x}}$	$=\left[e \underline{\boldsymbol{x}}, e^{\overline{\boldsymbol{x}}}\right]$	
$\sqrt{\boldsymbol{x}}$	$=[\sqrt{\boldsymbol{x}}, \sqrt{\overline{\boldsymbol{x}}}]$	if $0 \leq \underline{\boldsymbol{x}}$
$\log \boldsymbol{x}$	$=[\log \boldsymbol{x}, \log \overline{\boldsymbol{x}}]$	if $0<\underline{\boldsymbol{x}}$
$\arctan \boldsymbol{x}$	$=[\arctan \underline{\boldsymbol{x}}, \arctan \overline{\boldsymbol{x}}]$.	

Some explicit formulas are given below:

$e^{\boldsymbol{x}}$	$=\left[e^{\underline{\boldsymbol{x}}}, e^{\overline{\boldsymbol{x}}}\right]$	
$\sqrt{\boldsymbol{x}}$	$=[\sqrt{\underline{\boldsymbol{x}}}, \sqrt{\overline{\boldsymbol{x}}}]$	if $0 \leq \underline{\boldsymbol{x}}$
$\log \boldsymbol{x}$	$=[\log \underline{\boldsymbol{x}}, \log \overline{\boldsymbol{x}}]$	if $0<\underline{\boldsymbol{x}}$
$\arctan \boldsymbol{x}$	$=[\arctan \underline{\boldsymbol{x}}, \arctan \overline{\boldsymbol{x}}]$.	

Set $S^{+}=\{2 k \pi+\pi / 2: k \in \mathbb{Z}\}$ and $S^{-}=\{2 k \pi-\pi / 2: k \in \mathbb{Z}\}$. Then $\sin \boldsymbol{x}$ is given by

$$
\begin{cases}{[-1,1]} & : \text { if } \boldsymbol{x} \cap S^{-} \neq \emptyset \text { and } \boldsymbol{x} \cap S^{+} \neq \emptyset, \\ {[-1, \max \{\sin \underline{\boldsymbol{x}}, \sin \overline{\boldsymbol{x}}\}]} & : \text { if } \boldsymbol{x} \cap S^{-} \neq \emptyset \text { and } \boldsymbol{x} \cap S^{+}=\emptyset, \\ {[\min \{\sin \underline{\boldsymbol{x}}, \sin \overline{\boldsymbol{x}}\}, 1]} & : \text { if } \boldsymbol{x} \cap S^{-}=\emptyset \text { and } \boldsymbol{x} \cap S^{+} \neq \emptyset, \\ {[\min \{\sin \underline{\boldsymbol{x}}, \sin \overline{\boldsymbol{x}}\}, \max \{\sin \underline{\boldsymbol{x}}, \sin \overline{\boldsymbol{x}}\}]} & : \text { if } \boldsymbol{x} \cap S^{-}=\emptyset \text { and } \boldsymbol{x} \cap S^{+}=\emptyset .\end{cases}
$$

Graph Enclosures

A controlled discretization

We can now select and adapt the level of discretization

Graph Enclosures

A controlled discretization

We can now select and adapt the level of discretization

Various levels of discretization of $f(x)=\cos ^{3} x+\sin x$.

Solving non-linear equations

Solving non-linear equations

Consider everything. Keep what is good.
Avoid evil whenever you recognize it.
St. Paul, ca. 50 A.D. (The Bible, 1 Thess. 5:21-22)

Solving non-linear equations

Consider everything. Keep what is good.
Avoid evil whenever you recognize it.
St. Paul, ca. 50 A.D. (The Bible, 1 Thess. 5:21-22)

No solutions can be missed!

```
The code is transparent and natural
0 1 ~ f u n c t i o n ~ b i s e c t ( f c n N a m e , ~ X , ~ t o l ) ~
02 f = inline(fcnName);
03 if ( 0 <= f(X) ) % If f(X) contains zero...
04 if Diam(X) < tol % and the tolerance is met...
05 X % print the interval X.
0 6 ~ e l s e ~ \% ~ O t h e r w i s e , ~ d i v i d e ~ a n d ~ c o n q u e r .
07 bisect(fcnName, interval(Inf(X), Mid(X)), tol);
08 bisect(fcnName, interval(Mid(X), Sup(X)), tol);
09 end
10 end
```

```
The code is transparent and natural
0 1 ~ f u n c t i o n ~ b i s e c t ( f c n N a m e , ~ X , ~ t o l ) ~
02 f = inline(fcnName);
03 if ( 0 <= f(X) ) % If f(X) contains zero...
04 if Diam(X) < tol % and the tolerance is met...
05 X % print the interval X.
0 6 ~ e l s e ~ \% ~ O t h e r w i s e , ~ d i v i d e ~ a n d ~ c o n q u e r .
07 bisect(fcnName, interval(Inf(X), Mid(X)), tol);
    bisect(fcnName, interval(Mid(X), Sup(X)), tol);
    end
    end
```


Nice property

If F is well-defined on the domain, the algorithm produces an enclosure of all zeros of f. [No existence is established, however.]

Existence and uniqueness

Existence and uniqueness require fixed point theorems.

Existence and uniqueness

Existence and uniqueness require fixed point theorems.

Brouwer's fixed point theorem

Let B be homeomorhpic to the closed unit ball in \mathbb{R}^{n}. Then given any continuous mapping $f: B \rightarrow B$ there exists $x \in B$ such that $f(x)=x$.

Existence and uniqueness

Existence and uniqueness require fixed point theorems.

Brouwer's fixed point theorem

Let B be homeomorhpic to the closed unit ball in \mathbb{R}^{n}. Then given any continuous mapping $f: B \rightarrow B$ there exists $x \in B$ such that $f(x)=x$.

Schauder's fixed point theorem

Let X be a normed vector space, and let $K \subset X$ be a non-empty, compact, and convex set. Then given any continuous mapping $f: K \rightarrow K$ there exists $x \in K$ such that $f(x)=x$.

Existence and uniqueness

Existence and uniqueness require fixed point theorems.

Brouwer's fixed point theorem

Let B be homeomorhpic to the closed unit ball in \mathbb{R}^{n}. Then given any continuous mapping $f: B \rightarrow B$ there exists $x \in B$ such that $f(x)=x$.

Schauder's fixed point theorem

Let X be a normed vector space, and let $K \subset X$ be a non-empty, compact, and convex set. Then given any continuous mapping $f: K \rightarrow K$ there exists $x \in K$ such that $f(x)=x$.

Banach's fixed point theorem

If f is a contraction defined on a complete metric space X, then there exists a unique $x \in X$ such that $f(x)=x$.

Theorem

Let $f \in C^{1}(\mathbb{R}, \mathbb{R})$, and set $\check{x}=\operatorname{mid}(\boldsymbol{x})$. We define

$$
N_{f}(\boldsymbol{x}) \stackrel{\text { def }}{=} N_{f}(\boldsymbol{x}, \check{x})=\check{x}-[D F(\boldsymbol{x})]^{-1} f(\check{x}) .
$$

If $N_{f}(\boldsymbol{x})$ is well-defined, then the following statements hold:

Theorem

Let $f \in C^{1}(\mathbb{R}, \mathbb{R})$, and set $\check{x}=\operatorname{mid}(\boldsymbol{x})$. We define

$$
N_{f}(\boldsymbol{x}) \stackrel{\text { def }}{=} N_{f}(\boldsymbol{x}, \check{x})=\check{x}-[D F(\boldsymbol{x})]^{-1} f(\check{x}) .
$$

If $N_{f}(\boldsymbol{x})$ is well-defined, then the following statements hold:
(1) if \boldsymbol{x} contains a zero x^{*} of f, then so does $N_{f}(\boldsymbol{x}) \cap \boldsymbol{x}$;

Theorem

Let $f \in C^{1}(\mathbb{R}, \mathbb{R})$, and set $\check{x}=\operatorname{mid}(\boldsymbol{x})$. We define

$$
N_{f}(\boldsymbol{x}) \stackrel{\text { def }}{=} N_{f}(\boldsymbol{x}, \check{x})=\check{x}-[D F(\boldsymbol{x})]^{-1} f(\check{x}) .
$$

If $N_{f}(\boldsymbol{x})$ is well-defined, then the following statements hold:
(1) if \boldsymbol{x} contains a zero x^{*} of f, then so does $N_{f}(\boldsymbol{x}) \cap \boldsymbol{x}$;
(2) if $N_{f}(\boldsymbol{x}) \cap \boldsymbol{x}=\emptyset$, then \boldsymbol{x} contains no zeros of f;

Theorem

Let $f \in C^{1}(\mathbb{R}, \mathbb{R})$, and set $\check{x}=\operatorname{mid}(\boldsymbol{x})$. We define

$$
N_{f}(\boldsymbol{x}) \stackrel{\text { def }}{=} N_{f}(\boldsymbol{x}, \check{x})=\check{x}-[D F(\boldsymbol{x})]^{-1} f(\check{x}) .
$$

If $N_{f}(\boldsymbol{x})$ is well-defined, then the following statements hold:
(1) if \boldsymbol{x} contains a zero x^{*} of f, then so does $N_{f}(\boldsymbol{x}) \cap \boldsymbol{x}$;
(2) if $N_{f}(\boldsymbol{x}) \cap \boldsymbol{x}=\emptyset$, then \boldsymbol{x} contains no zeros of f;
(3) if $N_{f}(\boldsymbol{x}) \subseteq \boldsymbol{x}$, then \boldsymbol{x} contains a unique zero of f.

Theorem

Let $f \in C^{1}(\mathbb{R}, \mathbb{R})$, and set $\check{x}=\operatorname{mid}(\boldsymbol{x})$. We define

$$
N_{f}(\boldsymbol{x}) \stackrel{\text { def }}{=} N_{f}(\boldsymbol{x}, \check{x})=\check{x}-[D F(\boldsymbol{x})]^{-1} f(\check{x}) .
$$

If $N_{f}(\boldsymbol{x})$ is well-defined, then the following statements hold:
(1) if \boldsymbol{x} contains a zero x^{*} of f, then so does $N_{f}(\boldsymbol{x}) \cap \boldsymbol{x}$;
(2) if $N_{f}(\boldsymbol{x}) \cap \boldsymbol{x}=\emptyset$, then \boldsymbol{x} contains no zeros of f;
(3) if $N_{f}(\boldsymbol{x}) \subseteq \boldsymbol{x}$, then \boldsymbol{x} contains a unique zero of f.

Similar statements hold for the Krawczyk operator

$$
K_{f}(\boldsymbol{x}) \stackrel{\text { def }}{=} \check{x}-[D f(\check{x})]^{-1} f(\check{x})-\left(1-[D f(\check{x})]^{-1} F^{\prime}(\boldsymbol{x})\right)[-r, r],
$$

where we use the notation $r=\operatorname{rad}(\boldsymbol{x})$.

Algorithm

Starting from an initial search region \boldsymbol{x}_{0}, we form the sequence

$$
\boldsymbol{x}_{i+1}=N_{f}\left(\boldsymbol{x}_{i}\right) \cap \boldsymbol{x}_{i} \quad i=0,1, \ldots .
$$

Algorithm

Starting from an initial search region \boldsymbol{x}_{0}, we form the sequence

$$
\boldsymbol{x}_{i+1}=N_{f}\left(\boldsymbol{x}_{i}\right) \cap \boldsymbol{x}_{i} \quad i=0,1, \ldots
$$

Algorithm

Starting from an initial search region \boldsymbol{x}_{0}, we form the sequence

$$
\boldsymbol{x}_{i+1}=N_{f}\left(\boldsymbol{x}_{i}\right) \cap \boldsymbol{x}_{i} \quad i=0,1, \ldots
$$

Performance

If well-defined, this method is never worse than bisection, and it converges quadratically fast under mild conditions.

Newton's method in $\mathbb{R}^{\mathbb{R}}$

Example

Take $f(x)=-2.001+3 x-x^{3}$ and start with $\boldsymbol{x}_{0}=[-3,-3 / 2]$.

Example

Take $f(x)=-2.001+3 x-x^{3}$ and start with $\boldsymbol{x}_{0}=[-3,-3 / 2]$.

```
X(0) = [-3.000000000000000,-1.5000000000000000]; rad = 7.50000e-01
X(1) = [-2.140015625000001,-1.546099999999996]; rad = 2.96958e-01
X(2) = [-2.140015625000001,-1.961277398284108]; rad = 8.93691e-02
X(3) = [-2.006849239640351,-1.995570580247208]; rad = 5.63933e-03
X(4) = [-2.000120104486270,-2.000103608530276]; rad = 8.24798e-06
X(5) = [-2.000111102890393,-2.000111102873815]; rad = 8.28893e-12
X(6) = [-2.000111102881727,-2.000111102881724]; rad = 1.55431e-15
X(7) = [-2.000111102881727,-2.000111102881724]; rad = 1.55431e-15
Finite convergence!
```

Unique root in -2.00011110288172 +- 1.555e-15

Newton's method in \mathbb{R}^{R}

Example

Take $f(x)=-2.001+3 x-x^{3}$ and start with $\boldsymbol{x}_{0}=[-3,-3 / 2]$.

```
X(0) = [-3.000000000000000,-1.5000000000000000]; rad = 7.50000e-01
X(1) = [-2.140015625000001,-1.546099999999996]; rad = 2.96958e-01
X(2) = [-2.140015625000001,-1.961277398284108]; rad = 8.93691e-02
X(3) = [-2.006849239640351,-1.995570580247208]; rad = 5.63933e-03
X(4) = [-2.000120104486270,-2.000103608530276]; rad = 8.24798e-06
X(5) = [-2.000111102890393,-2.000111102873815]; rad = 8.28893e-12
X(6) = [-2.000111102881727,-2.000111102881724]; rad = 1.55431e-15
X(7) = [-2.000111102881727,-2.000111102881724]; rad = 1.55431e-15
Finite convergence!
Unique root in -2.00011110288172 +- 1.555e-15
```


Stopping condition

Stop when no further improvement takes place.

The Krawczyk method with bisection

When we have several zeros, we must bisect to isolate the zeros.

Example

Take $f(x)=\sin \left(e^{x}+1\right)$ and start with $\boldsymbol{x}_{0}=[0,3]$.

The Krawczyk method with bisection

When we have several zeros, we must bisect to isolate the zeros.

Example

Take $f(x)=\sin \left(e^{x}+1\right)$ and start with $\boldsymbol{x}_{0}=[0,3]$.

```
Domain : [0, 3]
Tolerance : 1e-10
Function calls : 71
    Unique zero in the interval 0.761549782880 [8890,9006]
    Unique zero in the interval 1.664529193[6825445,7060436]
    Unique zero in the interval 2.131177121086[2673,3558]
    Unique zero in the interval 2.4481018026567[773,801]
    Unique zero in the interval 2.68838906601606[36,68]
    Unique zero in the interval 2.8819786295709[728,1555]
```


The Krawczyk method with bisection

When we have several zeros, we must bisect to isolate the zeros.

Example

Take $f(x)=\sin \left(e^{x}+1\right)$ and start with $\boldsymbol{x}_{0}=[0,3]$.

```
Domain : [0, 3]
Tolerance : 1e-10
Function calls : 71
Unique zero in the interval 0.761549782880[8890,9006]
Unique zero in the interval 1.664529193[6825445,7060436]
Unique zero in the interval 2.131177121086[2673,3558]
Unique zero in the interval 2.4481018026567[773,801]
Unique zero in the interval 2.68838906601606[36,68]
Unique zero in the interval 2.8819786295709[728,1555]
```


Applications

Counting short periodic orbits for ODEs [Z. Galias] Measuring the stable regions of the quadratic map [D. Wilczak]

Example

Draw the level-set defined by

$$
f(x, y)=\sin \left(\cos x^{2}+10 \sin y^{2}\right)-y \cos x=0
$$

restricted to the domain $[-5,5] \times[-5,5]$.

Example

Draw the level-set defined by

$$
f(x, y)=\sin \left(\cos x^{2}+10 \sin y^{2}\right)-y \cos x=0
$$

restricted to the domain $[-5,5] \times[-5,5]$.
MATLAB produces the following picture:

Implicit curves (level sets)

Example

Draw the level-set defined by

$$
f(x, y)=\sin \left(\cos x^{2}+10 \sin y^{2}\right)-y \cos x=0 ;
$$

restricted to the domain $[-5,5] \times[-5,5]$.
MATLAB produces the following picture:

According to the same m-file, the level set defined by $|f(x, y)|=0$, however, appears to be empty.

But this is the same set!!!

The (increasingly tight) set-valued enclosures in both cases are

The (increasingly tight) set-valued enclosures in both cases are

Quadrature

Example (A bonus problem)
Compute the integral $\int_{0}^{8} \sin \left(x+e^{x}\right) d x$.

Quadrature

Example (A bonus problem)
Compute the integral $\int_{0}^{8} \sin \left(x+e^{x}\right) d x$.

A regular MATLAB session:
>> $q=q u a d(' \sin (x+\exp (x))$ ', 0,8$)$
$\mathrm{q}=$
0.251102722027180

Quadrature

Example (A bonus problem)

Compute the integral $\int_{0}^{8} \sin \left(x+e^{x}\right) d x$.

A regular MATLAB session:
>> $q=q u a d\left(' \sin (x+\exp (x))^{\prime}, 0,8\right)$
$\mathrm{q}=$
0.251102722027180

Using an adaptive validated integrator:
\$\$./adQuad 084 1e-4
Partitions: 8542
CPU time : 0.52 seconds
Integral : 0.347[3863144222905,4140198005782]

Quadrature

Example (A bonus problem)

Compute the integral $\int_{0}^{8} \sin \left(x+e^{x}\right) d x$.

A regular MATLAB session:
>> $q=q u a d\left(' \sin (x+\exp (x))^{\prime}, 0,8\right)$
$\mathrm{q}=$
0.251102722027180

Using an adaptive validated integrator:
\$\$./adQuad 084 1e-4
Partitions: 8542
CPU time : 0.52 seconds
Integral : 0.347[3863144222905,4140198005782]
\$\$./adQuad 0820 1e-10
Partitions: 874
CPU time : 0.45 seconds
Integral : $0.3474001726[492276,652638]$

Problem formulation

Given a finitely parametrized model function together with some (noisy) data, and a search region \mathcal{P} in parameter space:

$$
\underbrace{y=f(x ; p)}_{\text {model }} \quad \underbrace{\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}}_{\text {data }} \quad \underbrace{p \in \mathcal{P}}_{\text {space }}
$$

try to find parameters that give a good agreement between the data and the model. [A classic inverse problem]

Problem formulation

Given a finitely parametrized model function together with some (noisy) data, and a search region \mathcal{P} in parameter space:

$$
\underbrace{y=f(x ; p)}_{\text {model }} \quad \underbrace{\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}}_{\text {data }} \quad \underbrace{p \in \mathcal{P}}_{\text {space }}
$$

try to find parameters that give a good agreement between the data and the model. [A classic inverse problem]

- Existence: with noisy data, or with an incorrect model, there is usually no parameter that produces a perfect fit.

Problem formulation

Given a finitely parametrized model function together with some (noisy) data, and a search region \mathcal{P} in parameter space:

$$
\underbrace{y=f(x ; p)}_{\text {model }} \quad \underbrace{\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}}_{\text {data }} \quad \underbrace{p \in \mathcal{P}}_{\text {space }}
$$

try to find parameters that give a good agreement between the data and the model. [A classic inverse problem]

- Existence: with noisy data, or with an incorrect model, there is usually no parameter that produces a perfect fit.
- Uniqueness: even with unlimited amounts of exact data, there might not exist a unique solution $p^{\sharp} \in \mathcal{P}$ such that

$$
f\left(x_{i} ; p^{\sharp}\right)=y_{i} \quad i=1, \ldots, N .
$$

Problem formulation

Given a finitely parametrized model function together with some (noisy) data, and a search region \mathcal{P} in parameter space:

$$
\underbrace{y=f(x ; p)}_{\text {model }} \quad \underbrace{\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}}_{\text {data }} \quad \underbrace{p \in \mathcal{P}}_{\text {space }}
$$

try to find parameters that give a good agreement between the data and the model. [A classic inverse problem]

- Existence: with noisy data, or with an incorrect model, there is usually no parameter that produces a perfect fit.
- Uniqueness: even with unlimited amounts of exact data, there might not exist a unique solution $p^{\sharp} \in \mathcal{P}$ such that

$$
f\left(x_{i} ; p^{\sharp}\right)=y_{i} \quad i=1, \ldots, N .
$$

- Instability: inverse problems can be extremely ill-conditioned.

A statistical approach

Use a (weighted) least-squares approach to find the best parameter:

$$
\underset{p \in \mathcal{P}}{\operatorname{argmin}} \sum_{i=1}^{N} w_{i}\left|f\left(x_{i} ; p\right)-y_{i}\right|^{2} .
$$

A statistical approach

Use a (weighted) least-squares approach to find the best parameter:

$$
\underset{p \in \mathcal{P}}{\operatorname{argmin}} \sum_{i=1}^{N} w_{i}\left|f\left(x_{i} ; p\right)-y_{i}\right|^{2} .
$$

- If the parameters enter f linearly, this is "straight-forward".

Introduction

A statistical approach

Use a (weighted) least-squares approach to find the best parameter:

$$
\underset{p \in \mathcal{P}}{\operatorname{argmin}} \sum_{i=1}^{N} w_{i}\left|f\left(x_{i} ; p\right)-y_{i}\right|^{2} .
$$

- If the parameters enter f linearly, this is "straight-forward".
- Otherwise, we have moved the problem to global optimization.

Introduction

A statistical approach

Use a (weighted) least-squares approach to find the best parameter:

$$
\underset{p \in \mathcal{P}}{\operatorname{argmin}} \sum_{i=1}^{N} w_{i}\left|f\left(x_{i} ; p\right)-y_{i}\right|^{2} .
$$

- If the parameters enter f linearly, this is "straight-forward".
- Otherwise, we have moved the problem to global optimization.
- The selection of weights is almost always a delicate issue.

Introduction

A statistical approach

Use a (weighted) least-squares approach to find the best parameter:

$$
\underset{p \in \mathcal{P}}{\operatorname{argmin}} \sum_{i=1}^{N} w_{i}\left|f\left(x_{i} ; p\right)-y_{i}\right|^{2} .
$$

- If the parameters enter f linearly, this is "straight-forward".
- Otherwise, we have moved the problem to global optimization.
- The selection of weights is almost always a delicate issue.

A set-valued approach

Locate nearby models that are consistent with nearby data:

$$
f(x ; p) \longrightarrow f(x ; \boldsymbol{p}) \quad\left(x_{i}, y_{i}\right) \longrightarrow\left(x_{i}, \boldsymbol{y}_{i}\right)
$$

Set-valued computations

Points versus sets in parameter space

We move from the point-valued model function $f(x ; p)$ to the set-valued version $f(x ; \boldsymbol{p})$.

Points versus sets in parameter space

We move from the point-valued model function $f(x ; p)$ to the set-valued version $f(x ; \boldsymbol{p})$.

Figure: (a) $p=0.15$, a point in \mathcal{P}. (b) $\boldsymbol{p}=[0.14,0.16]$, a subset of \mathcal{P}. The model function is $f(x ; p)=x e^{-p x}$, and 10 samples are shown.

Strategy

Adaptively bisect the parameter space into sub-boxes: $\mathcal{P}=\cup_{j=1}^{K} \boldsymbol{p}_{j}$ and examine each \boldsymbol{p}_{j} separately. [Good for parallelisation]

Strategy

Adaptively bisect the parameter space into sub-boxes: $\mathcal{P}=\cup_{j=1}^{K} \boldsymbol{p}_{j}$ and examine each \boldsymbol{p}_{j} separately. [Good for parallelisation]

Each sub-box \boldsymbol{p} of the parameter space falls into one of three categories:

Parameter estimation

Strategy

Adaptively bisect the parameter space into sub-boxes: $\mathcal{P}=\cup_{j=1}^{K} \boldsymbol{p}_{j}$ and examine each \boldsymbol{p}_{j} separately. [Good for parallelisation]

Each sub-box \boldsymbol{p} of the parameter space falls into one of three categories:

$$
\begin{aligned}
& \text { (1) consistent } \\
& \text { if } f\left(x_{i} ; \boldsymbol{p}\right) \subset \boldsymbol{y}_{i} \text { for all } i=0, \ldots, N \text {. SAVE }
\end{aligned}
$$

Parameter estimation

Strategy

Adaptively bisect the parameter space into sub-boxes: $\mathcal{P}=\cup_{j=1}^{K} \boldsymbol{p}_{j}$ and examine each \boldsymbol{p}_{j} separately. [Good for parallelisation]

Each sub-box \boldsymbol{p} of the parameter space falls into one of three categories:
(1) consistent
if $f\left(x_{i} ; \boldsymbol{p}\right) \subset \boldsymbol{y}_{i}$ for all $i=0, \ldots, N$.
(2) inconsistent
if $f\left(x_{i} ; \boldsymbol{p}\right) \cap \boldsymbol{y}_{i}=\emptyset$ for at least one i.
DROP

Parameter estimation

Strategy

Adaptively bisect the parameter space into sub-boxes: $\mathcal{P}=\cup_{j=1}^{K} \boldsymbol{p}_{j}$ and examine each \boldsymbol{p}_{j} separately. [Good for parallelisation]

Each sub-box \boldsymbol{p} of the parameter space falls into one of three categories:
(1) consistent
if $f\left(x_{i} ; \boldsymbol{p}\right) \subset \boldsymbol{y}_{i}$ for all $i=0, \ldots, N$.
(2) inconsistent
if $f\left(x_{i} ; \boldsymbol{p}\right) \cap \boldsymbol{y}_{i}=\emptyset$ for at least one i.
DROP
(3) undetermined
not (1), but $f\left(x_{i} ; \boldsymbol{p}\right) \cap \boldsymbol{y}_{i} \neq \emptyset$ for all $i=0, \ldots, N$.

Parameter estimation

Example

Consider the model function

$$
f\left(x ; p_{1}, p_{2}\right)=5 e^{-p_{1} x}-4 \times 10^{-6} e^{-p_{2} x}
$$

with samples taken at $x=0,5 \ldots, 40$ using $p^{\sharp}=(0.11,-0.32)$.
Accepting a relative noise level of 90%, we get the following set of consistent parameters:

Parameter estimation

Example

Consider the model function

$$
f\left(x ; p_{1}, p_{2}\right)=5 e^{-p_{1} x}-4 \times 10^{-6} e^{-p_{2} x}
$$

with samples taken at $x=0,5 \ldots, 40$ using $p^{\sharp}=(0.11,-0.32)$.
Accepting a relative noise level of 90%, we get the following set of consistent parameters:

Parameter estimation

Varying the relative noise levels between $10,20 \ldots, 90 \%$, we get the following indeterminate sets.

Constraint propagation

Constraining the parameter/data space
We use set-valued constraint propagation to quickly discard inconsistent regions in the data and the parameter space.

This is done without bisection!

Constraint propagation

Constraining the parameter/data space

We use set-valued constraint propagation to quickly discard inconsistent regions in the data and the parameter space.

This is done without bisection!

Example

Let $f(x ; p)=x e^{-p x}$, and consider the situation $\boldsymbol{p}=[0,1]$ and $(x, \boldsymbol{y})=(2,[1,3])$.

Constraint propagation

Constraining the parameter/data space

We use set-valued constraint propagation to quickly discard inconsistent regions in the data and the parameter space.

This is done without bisection!

Example

Let $f(x ; p)=x e^{-p x}$, and consider the situation $\boldsymbol{p}=[0,1]$ and $(x, \boldsymbol{y})=(2,[1,3])$. By a forward (interval) evaluation, we have

$$
f(2 ;[0,1])=2 e^{-2[0,1]}=2 e^{[-2,0]}=2\left[e^{-2}, 1\right]=\left[2 e^{-2}, 2\right] .
$$

Constraint propagation

Constraining the parameter/data space

We use set-valued constraint propagation to quickly discard inconsistent regions in the data and the parameter space.

This is done without bisection!

Example

Let $f(x ; p)=x e^{-p x}$, and consider the situation $\boldsymbol{p}=[0,1]$ and $(x, \boldsymbol{y})=(2,[1,3])$. By a forward (interval) evaluation, we have

$$
f(2 ;[0,1])=2 e^{-2[0,1]}=2 e^{[-2,0]}=2\left[e^{-2}, 1\right]=\left[2 e^{-2}, 2\right] .
$$

This allows us to contract the data range according to

$$
\boldsymbol{y} \mapsto \boldsymbol{y} \cap f(x ; \boldsymbol{p})=[1,3] \cap\left[2 e^{-2}, 2\right]=[1,2] .
$$

Constraint propagation

Directed Acyclic Graphs (DAGs)
We use a DAG representation of the model function to automate constraint propagations.

Constraint propagation

Directed Acyclic Graphs (DAGs)

We use a DAG representation of the model function to automate constraint propagations.

Constraint propagation

Directed Acyclic Graphs (DAGs)

We use a DAG representation of the model function to automate constraint propagations.

Figure: The DAG representation of a forward sweep of $y=x e^{-p x}$, together with the corresponding code list.

Constraint propagation

Directed Acyclic Graphs (DAGs)

We can propagate constraints from data to the parameter by moving backwards in the code list.

Constraint propagation

Directed Acyclic Graphs (DAGs)

We can propagate constraints from data to the parameter by moving backwards in the code list.

Constraint propagation

Directed Acyclic Graphs (DAGs)

We can propagate constraints from data to the parameter by moving backwards in the code list.

Figure: The DAG representation of a backward sweep of $y=x e^{-p x}$, together with the corresponding code list.

Constraint propagation

Example

Again, we work on the model function $y=f(x ; p)=x e^{-p x}$, but now with the data $(x, \boldsymbol{y})=(2,[1,3])$, together with the parameter domain $\boldsymbol{p}=[0,1]$.

Constraint propagation

Example

Again, we work on the model function $y=f(x ; p)=x e^{-p x}$, but now with the data $(x, \boldsymbol{y})=(2,[1,3])$, together with the parameter domain $\boldsymbol{p}=[0,1]$. The forward sweep, performed in Example 7, contracts the interval data to $\boldsymbol{y}=[1,2]$.

Constraint propagation

Example

Again, we work on the model function $y=f(x ; p)=x e^{-p x}$, but now with the data $(x, \boldsymbol{y})=(2,[1,3])$, together with the parameter domain $\boldsymbol{p}=[0,1]$. The forward sweep, performed in Example 7, contracts the interval data to $\boldsymbol{y}=[1,2]$. Performing a backward sweep contracts the interval parameter to $\boldsymbol{p}=\left[0, \frac{1}{2} \log 2\right]$:

$$
\begin{aligned}
& n_{5}=n_{6} \div n_{1}=[1,2] \div 2=\left[\frac{1}{2}, 1\right] \\
& n_{4}=\log n_{5}=\log \left[\frac{1}{2}, 1\right]=[-\log 2,0] \\
& n_{3}=-n_{4}=[0, \log 2] \\
& n_{2}=n_{3} \div n_{1}=[0, \log 2] \div 2 \approx[0,0.34657359] .
\end{aligned}
$$

Constraint propagation

Example

Again, we work on the model function $y=f(x ; p)=x e^{-p x}$, but now with the data $(x, \boldsymbol{y})=(2,[1,3])$, together with the parameter domain $\boldsymbol{p}=[0,1]$. The forward sweep, performed in Example 7, contracts the interval data to $\boldsymbol{y}=[1,2]$. Performing a backward sweep contracts the interval parameter to $\boldsymbol{p}=\left[0, \frac{1}{2} \log 2\right]$:

$$
\begin{aligned}
& n_{5}=n_{6} \div n_{1}=[1,2] \div 2=\left[\frac{1}{2}, 1\right] \\
& n_{4}=\log n_{5}=\log \left[\frac{1}{2}, 1\right]=[-\log 2,0] \\
& n_{3}=-n_{4}=[0, \log 2] \\
& n_{2}=n_{3} \div n_{1}=[0, \log 2] \div 2 \approx[0,0.34657359] .
\end{aligned}
$$

Note that, in one forward/backward sweep, we managed to exclude over 65% of the parameter domain, at the same time reducing the data uncertainty by 50%.

Mixed-effects models

We are given several data sets (trajectories) corresponding to k different "individuals":

$$
\begin{array}{ll}
\text { individual }_{1}: & \left(x_{11}, y_{11}\right),\left(x_{12}, y_{12}\right), \ldots,\left(x_{1 N}, y_{1 N_{1}}\right) \\
\text { individual }_{2}: & \left(x_{21}, y_{21}\right),\left(x_{22}, y_{22}\right), \ldots,\left(x_{2 N}, y_{2 N_{2}}\right)
\end{array}
$$

individual $_{k}$:

$$
\left(x_{k 1}, y_{k 1}\right),\left(x_{k 2}, y_{k 2}\right), \ldots,\left(x_{k N}, y_{k N_{k}}\right) .
$$

Some model parameters are equal (shared) for all individuals, and some are distinct.

Mixed-effects models

Mixed-effects models

We are given several data sets (trajectories) corresponding to k different "individuals":

individual $_{1}:$	$\left(x_{11}, y_{11}\right),\left(x_{12}, y_{12}\right), \ldots,\left(x_{1 N}, y_{1 N_{1}}\right)$
individual $_{2}:$	$\left(x_{21}, y_{21}\right),\left(x_{22}, y_{22}\right), \ldots,\left(x_{2 N}, y_{2 N_{2}}\right)$

individual $_{k}: \quad\left(x_{k 1}, y_{k 1}\right),\left(x_{k 2}, y_{k 2}\right), \ldots,\left(x_{k N}, y_{k N_{k}}\right)$.
Some model parameters are equal (shared) for all individuals, and some are distinct.

- We need to consider all individuals simultaneously. Otherwise the number of unknown parameters may be too large.

A mixed-effects model for orange tree truncs

Example

We will apply our method to the following scenario:

A mixed-effects model for orange tree truncs

Example

We will apply our method to the following scenario:

$$
\text { Model function: } \quad f(x ; p)=\frac{p_{1}}{1+p_{2} e^{p_{3} x}}
$$

Example

We will apply our method to the following scenario:

$$
\text { Model function: } \quad f(x ; p)=\frac{p_{1}}{1+p_{2} e^{p_{3} x}}
$$

Individual parameter: $\quad p_{i 1}=p_{1}^{\sharp}+\eta_{i}, \quad \eta_{i} \sim N\left(0, \sigma^{2}\right)$

Example

We will apply our method to the following scenario:

$$
\text { Model function: } \quad f(x ; p)=\frac{p_{1}}{1+p_{2} e^{p_{3} x}}
$$

Individual parameter:

$$
p_{i 1}=p_{1}^{\sharp}+\eta_{i}, \quad \eta_{i} \sim N\left(0, \sigma^{2}\right)
$$

Data perturbation:

$$
y_{i j}=y_{i j}^{\sharp}\left(1+\theta_{i j}\right), \quad \theta_{i j} \sim U(-\epsilon,+\epsilon)
$$

Example

We will apply our method to the following scenario:
Model function: $\quad f(x ; p)=\frac{p_{1}}{1+p_{2} e^{p_{3} x}}$
Individual parameter:

$$
p_{i 1}=p_{1}^{\sharp}+\eta_{i}, \quad \eta_{i} \sim N\left(0, \sigma^{2}\right)
$$

Data perturbation:

$$
y_{i j}=y_{i j}^{\sharp}\left(1+\theta_{i j}\right), \quad \theta_{i j} \sim U(-\epsilon,+\epsilon)
$$

For this specific example, we will use $N_{p} \in\{1,2,5,50\}$ subjects, sampled at $N_{d}=10$ data sites, evenly spaced within [100, 1600].

Example

We will apply our method to the following scenario:
Model function: $\quad f(x ; p)=\frac{p_{1}}{1+p_{2} e^{p_{3} x}}$
Individual parameter:

$$
p_{i 1}=p_{1}^{\sharp}+\eta_{i}, \quad \eta_{i} \sim N\left(0, \sigma^{2}\right)
$$

Data perturbation:

$$
y_{i j}=y_{i j}^{\sharp}\left(1+\theta_{i j}\right), \quad \theta_{i j} \sim U(-\epsilon,+\epsilon)
$$

For this specific example, we will use $N_{p} \in\{1,2,5,50\}$ subjects, sampled at $N_{d}=10$ data sites, evenly spaced within [100, 1600].

Target parameters:

$$
p^{\sharp}=(191.84,8.153,-0.0029), \sigma=20, \epsilon \in\{0.01,0.1,0.2,0.5\} .
$$

Example

We will apply our method to the following scenario:

$$
\text { Model function: } \quad f(x ; p)=\frac{p_{1}}{1+p_{2} e^{p_{3} x}}
$$

Individual parameter:

$$
p_{i 1}=p_{1}^{\sharp}+\eta_{i}, \quad \eta_{i} \sim N\left(0, \sigma^{2}\right)
$$

Data perturbation:

$$
y_{i j}=y_{i j}^{\sharp}\left(1+\theta_{i j}\right), \quad \theta_{i j} \sim U(-\epsilon,+\epsilon)
$$

For this specific example, we will use $N_{p} \in\{1,2,5,50\}$ subjects, sampled at $N_{d}=10$ data sites, evenly spaced within [100, 1600].

Target parameters:

$$
p^{\sharp}=(191.84,8.153,-0.0029), \sigma=20, \epsilon \in\{0.01,0.1,0.2,0.5\} .
$$

Search region:

$$
\mathcal{P}=([0,300],[0,9],[-1,0]) .
$$

Figure: Data inflation and contraction for the example. The graph of the model function for one subject (blue line). The data points are marked with red dots. The inflated data sets are shown as striped bars, and the re-contracted data as green bars.

Numerical results

	$N_{p}=1$	$N_{p}=2$
$\epsilon=0.01$	$190.639(--)(0.010)$	$193.141(19.6)(0.013)$
$\epsilon=0.1$	$194.139(--)(0.092)$	$195.233(21.1)(0.097)$
$\epsilon=0.2$	$189.139(--)(0.190)$	$193.437(20.3)(0.192)$
$\epsilon=0.5$	$167.226(--)(0.604)$	$167.770(26.6)(0.589)$

	$N_{p}=5$	$N_{p}=50$
$\epsilon=0.01$	$191.675(20.1)(0.014)$	$191.239(20.1)(0.012)$
$\epsilon=0.1$	$192.954(21.4)(0.099)$	$198.428(22.2)(0.110)$
$\epsilon=0.2$	$191.773(20.3)(0.203)$	$197.580(23.6)(0.214)$
$\epsilon=0.5$	$164.656(23.9)(0.620)$	$174.318(27.1)(0.618)$

Table: The results of four experiments for the example, each using 100 trial runs with $p_{1}=191.184$, and $\sigma=20.0$. For each pair $\left(\epsilon, N_{p}\right)$, we display the triple $\mu\left(p_{1}\right), \mu(\sigma)$, and $\mu(\epsilon)$ - the average estimates of the distribution parameters for p_{1}, and the data error.

Figure: The set of consistent parameters for two subjects from the example.

Conclusions

Conclusions

- Standard numerics does not produce mathematics.

Conclusions

- Standard numerics does not produce mathematics.
- Set-valued mathematics enables validated numerics.

Conclusions

- Standard numerics does not produce mathematics.
- Set-valued mathematics enables validated numerics.
- Existence (uniqueness) comes from fixed point theorems.

Conclusions

- Standard numerics does not produce mathematics.
- Set-valued mathematics enables validated numerics.
- Existence (uniqueness) comes from fixed point theorems.
- Set-valued methods are suitable for inverse problems.

Conclusions

- Standard numerics does not produce mathematics.
- Set-valued mathematics enables validated numerics.
- Existence (uniqueness) comes from fixed point theorems.
- Set-valued methods are suitable for inverse problems.
- Parameter estimation is done via relaxation.

Conclusions

- Standard numerics does not produce mathematics.
- Set-valued mathematics enables validated numerics.
- Existence (uniqueness) comes from fixed point theorems.
- Set-valued methods are suitable for inverse problems.
- Parameter estimation is done via relaxation.
- The relaxed problem is solved via set inversion.

Further study...

Interval Computations Web Page

http://www.cs.utep.edu/interval-comp

Interval Computations Web Page

http://www.cs.utep.edu/interval-comp

INTLAB - INTerval LABoratory
http://www.ti3.tu-harburg.de/~rump/intlab/

Interval Computations Web Page
http://www.cs.utep.edu/interval-comp

INTLAB - INTerval LABoratory
http://www.ti3.tu-harburg.de/~rump/intlab/

CXSC - C eXtensions for Scientific Computation

http://www.xsc.de/

Interval Computations Web Page
http://www.cs.utep.edu/interval-comp

INTLAB - INTerval LABoratory

http://www.ti3.tu-harburg.de/~rump/intlab/

CXSC - C eXtensions for Scientific Computation http://www.xsc.de/

CAPA - Computer-Aided Proofs in Analysis http://www.math.uu.se/~warwick/CAPA/

A short message from your sponsors...

Validated Numerics:

A Short Introduction to Rigorous Computations

Warwick Tucker
Princeton University Press, 2011
ISBN: 9780691147819
152 pp. $|6 \times 9| 41$ illus. $\mid 12$ tables.
USD 45.00/GBP 30.95
http://press.princeton.edu/titles/9488.html

