
Validated Numerics
a short introduction to rigorous computations

Warwick Tucker

The CAPA group

Department of Mathematics

Uppsala University, Sweden

Are floating point computations reliable?

Computing with the C/C++ single format

Are floating point computations reliable?

Computing with the C/C++ single format

Example 1: Repeated addition

103∑

i=1

〈10−3〉 = 0.999990701675415,

104∑

i=1

〈10−4〉 = 1.000053524971008.

Are floating point computations reliable?

Computing with the C/C++ single format

Example 1: Repeated addition

103∑

i=1

〈10−3〉 = 0.999990701675415,

104∑

i=1

〈10−4〉 = 1.000053524971008.

Example 2: Order of summation

1 +
1

2
+

1

3
+ · · ·+ 1

106
= 14.357357,

1

106
+ · · ·+ 1

3
+

1

2
+ 1 = 14.392651.

Are floating point computations reliable?

Given the point (x, y) = (77617, 33096), evaluate the function

f(x, y) = 333.75y6 + x2(11x2y2 − y6 − 121y4 − 2) + 5.5y8 + x/(2y)

Are floating point computations reliable?

Given the point (x, y) = (77617, 33096), evaluate the function

f(x, y) = 333.75y6 + x2(11x2y2 − y6 − 121y4 − 2) + 5.5y8 + x/(2y)

IBM S/370 (β = 16) with FORTRAN:

type p f(x, y)

REAL*4 24 1.172603 . . .

REAL*8 53 1.1726039400531 . . .

REAL*10 64 1.172603940053178 . . .

Are floating point computations reliable?

Given the point (x, y) = (77617, 33096), evaluate the function

f(x, y) = 333.75y6 + x2(11x2y2 − y6 − 121y4 − 2) + 5.5y8 + x/(2y)

IBM S/370 (β = 16) with FORTRAN:

type p f(x, y)

REAL*4 24 1.172603 . . .

REAL*8 53 1.1726039400531 . . .

REAL*10 64 1.172603940053178 . . .

Pentium III (β = 2) with C/C++ (gcc/g++):

type p f(x, y)

float 24 178702833214061281280

double 53 178702833214061281280

long double 64 178702833214061281280

Are floating point computations reliable?

Given the point (x, y) = (77617, 33096), evaluate the function

f(x, y) = 333.75y6 + x2(11x2y2 − y6 − 121y4 − 2) + 5.5y8 + x/(2y)

IBM S/370 (β = 16) with FORTRAN:

type p f(x, y)

REAL*4 24 1.172603 . . .

REAL*8 53 1.1726039400531 . . .

REAL*10 64 1.172603940053178 . . .

Pentium III (β = 2) with C/C++ (gcc/g++):

type p f(x, y)

float 24 178702833214061281280

double 53 178702833214061281280

long double 64 178702833214061281280

Correct answer: −0.8273960599 . . .

How do we control rounding errors?

Round each partial result both ways

If x, y ∈ F and ⋆ ∈ {+,−,×,÷}, we can enclose the exact result
in an interval:

x ⋆ y ∈ [▽(x ⋆ y),△(x ⋆ y)].

How do we control rounding errors?

Round each partial result both ways

If x, y ∈ F and ⋆ ∈ {+,−,×,÷}, we can enclose the exact result
in an interval:

x ⋆ y ∈ [▽(x ⋆ y),△(x ⋆ y)].

Since all (modern) computers round with maximal quality, the
interval is the smallest one that contains the exact result.

How do we control rounding errors?

Round each partial result both ways

If x, y ∈ F and ⋆ ∈ {+,−,×,÷}, we can enclose the exact result
in an interval:

x ⋆ y ∈ [▽(x ⋆ y),△(x ⋆ y)].

Since all (modern) computers round with maximal quality, the
interval is the smallest one that contains the exact result.

Question

How do we compute with intervals? And why, really?

Arithmetic over IR

Definition

If ⋆ is one of the operators +,−,×,÷, and if a, b ∈ IR, then

a ⋆ b = {a ⋆ b : a ∈ a, b ∈ b},

except that a÷ b is undefined if 0 ∈ b.

Arithmetic over IR

Definition

If ⋆ is one of the operators +,−,×,÷, and if a, b ∈ IR, then

a ⋆ b = {a ⋆ b : a ∈ a, b ∈ b},

except that a÷ b is undefined if 0 ∈ b.

Simple arithmetic

a+ b = [a+ b,a+ b]

a− b = [a− b,a− b]

a× b = [min{ab,ab,ab,ab},max{ab,ab,ab,ab}]
a÷ b = a× [1/b, 1/b], if 0 /∈ b.

Arithmetic over IR

Definition

If ⋆ is one of the operators +,−,×,÷, and if a, b ∈ IR, then

a ⋆ b = {a ⋆ b : a ∈ a, b ∈ b},

except that a÷ b is undefined if 0 ∈ b.

Simple arithmetic

a+ b = [a+ b,a+ b]

a− b = [a− b,a− b]

a× b = [min{ab,ab,ab,ab},max{ab,ab,ab,ab}]
a÷ b = a× [1/b, 1/b], if 0 /∈ b.

On a computer we use directed rounding, e.g.
a+ b = [▽(a⊕ b),△(a ⊕ b)].

Interval-valued functions

Range enclosure

Extend a real-valued function f to an interval-valued F :

R(f ;x) = {f(x) : x ∈ x} ⊆ F (x)

Interval-valued functions

Range enclosure

Extend a real-valued function f to an interval-valued F :

R(f ;x) = {f(x) : x ∈ x} ⊆ F (x)

x

f(x)

x

F (x)

Interval-valued functions

Range enclosure

Extend a real-valued function f to an interval-valued F :

R(f ;x) = {f(x) : x ∈ x} ⊆ F (x)

x

f(x)

x

F (x)

y /∈ F (x) implies that f(x) 6= y for all x ∈ x.

Interval-valued functions

Some explicit formulas are given below:

Interval-valued functions

Some explicit formulas are given below:

ex = [ex, ex]√
x = [

√
x,

√
x] if 0 ≤ x

logx = [logx, logx] if 0 < x

arctanx = [arctanx, arctanx] .

Interval-valued functions

Some explicit formulas are given below:

ex = [ex, ex]√
x = [

√
x,

√
x] if 0 ≤ x

logx = [logx, logx] if 0 < x

arctanx = [arctanx, arctanx] .

Set S+ = {2kπ + π/2: k ∈ Z} and S− = {2kπ − π/2: k ∈ Z}.
Then sinx is given by

[−1, 1] : if x ∩ S− 6= ∅ and x ∩ S+ 6= ∅,
[−1,max{sinx, sinx}] : if x ∩ S− 6= ∅ and x ∩ S+ = ∅,
[min{sinx, sinx}, 1] : if x ∩ S− = ∅ and x ∩ S+ 6= ∅,
[min{sinx, sinx},max{sinx, sinx}] : if x ∩ S− = ∅ and x ∩ S+ = ∅.

Graph Enclosures

A controlled discretization

We can now select and adapt the level of discretization

Graph Enclosures

A controlled discretization

We can now select and adapt the level of discretization

−5 −4 −3 −2 −1 0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−5

0

5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0

1

2

3

4

x

f(x)

f(x) = cos(x)3 + sin(x)

Various levels of discretization of f(x) = cos3 x+ sinx.

Solving non-linear equations

Solving non-linear equations

Consider everything. Keep what is good.

Avoid evil whenever you recognize it.

St. Paul, ca. 50 A.D. (The Bible, 1 Thess. 5:21-22)

Solving non-linear equations

Consider everything. Keep what is good.

Avoid evil whenever you recognize it.

St. Paul, ca. 50 A.D. (The Bible, 1 Thess. 5:21-22)

No solutions can be missed!

Solving non-linear equation

The code is transparent and natural

01 function bisect(fcnName, X, tol)

02 f = inline(fcnName);

03 if (0 <= f(X)) % If f(X) contains zero...

04 if Diam(X) < tol % and the tolerance is met...

05 X % print the interval X.

06 else % Otherwise, divide and conquer.

07 bisect(fcnName, interval(Inf(X), Mid(X)), tol);

08 bisect(fcnName, interval(Mid(X), Sup(X)), tol);

09 end

10 end

Solving non-linear equation

The code is transparent and natural

01 function bisect(fcnName, X, tol)

02 f = inline(fcnName);

03 if (0 <= f(X)) % If f(X) contains zero...

04 if Diam(X) < tol % and the tolerance is met...

05 X % print the interval X.

06 else % Otherwise, divide and conquer.

07 bisect(fcnName, interval(Inf(X), Mid(X)), tol);

08 bisect(fcnName, interval(Mid(X), Sup(X)), tol);

09 end

10 end

Nice property

If F is well-defined on the domain, the algorithm produces an
enclosure of all zeros of f . [No existence is established, however.]

Existence and uniqueness

Existence and uniqueness require fixed point theorems.

Existence and uniqueness

Existence and uniqueness require fixed point theorems.

Brouwer’s fixed point theorem

Let B be homeomorhpic to the closed unit ball in R
n. Then given

any continuous mapping f : B → B there exists x ∈ B such that
f(x) = x.

Existence and uniqueness

Existence and uniqueness require fixed point theorems.

Brouwer’s fixed point theorem

Let B be homeomorhpic to the closed unit ball in R
n. Then given

any continuous mapping f : B → B there exists x ∈ B such that
f(x) = x.

Schauder’s fixed point theorem

Let X be a normed vector space, and let K ⊂ X be a non-empty,
compact, and convex set. Then given any continuous mapping
f : K → K there exists x ∈ K such that f(x) = x.

Existence and uniqueness

Existence and uniqueness require fixed point theorems.

Brouwer’s fixed point theorem

Let B be homeomorhpic to the closed unit ball in R
n. Then given

any continuous mapping f : B → B there exists x ∈ B such that
f(x) = x.

Schauder’s fixed point theorem

Let X be a normed vector space, and let K ⊂ X be a non-empty,
compact, and convex set. Then given any continuous mapping
f : K → K there exists x ∈ K such that f(x) = x.

Banach’s fixed point theorem

If f is a contraction defined on a complete metric space X, then
there exists a unique x ∈ X such that f(x) = x.

Newton’s method in IR

Theorem

Let f ∈ C1(R,R), and set x̌ = mid(x). We define

Nf (x)
def
= Nf (x, x̌) = x̌− [DF (x)]−1f(x̌).

If Nf (x) is well-defined, then the following statements hold:

Newton’s method in IR

Theorem

Let f ∈ C1(R,R), and set x̌ = mid(x). We define

Nf (x)
def
= Nf (x, x̌) = x̌− [DF (x)]−1f(x̌).

If Nf (x) is well-defined, then the following statements hold:

(1) if x contains a zero x∗ of f , then so does Nf (x) ∩ x;

Newton’s method in IR

Theorem

Let f ∈ C1(R,R), and set x̌ = mid(x). We define

Nf (x)
def
= Nf (x, x̌) = x̌− [DF (x)]−1f(x̌).

If Nf (x) is well-defined, then the following statements hold:

(1) if x contains a zero x∗ of f , then so does Nf (x) ∩ x;

(2) if Nf (x) ∩ x = ∅, then x contains no zeros of f ;

Newton’s method in IR

Theorem

Let f ∈ C1(R,R), and set x̌ = mid(x). We define

Nf (x)
def
= Nf (x, x̌) = x̌− [DF (x)]−1f(x̌).

If Nf (x) is well-defined, then the following statements hold:

(1) if x contains a zero x∗ of f , then so does Nf (x) ∩ x;

(2) if Nf (x) ∩ x = ∅, then x contains no zeros of f ;

(3) if Nf (x) ⊆ x, then x contains a unique zero of f .

Newton’s method in IR

Theorem

Let f ∈ C1(R,R), and set x̌ = mid(x). We define

Nf (x)
def
= Nf (x, x̌) = x̌− [DF (x)]−1f(x̌).

If Nf (x) is well-defined, then the following statements hold:

(1) if x contains a zero x∗ of f , then so does Nf (x) ∩ x;

(2) if Nf (x) ∩ x = ∅, then x contains no zeros of f ;

(3) if Nf (x) ⊆ x, then x contains a unique zero of f .

Similar statements hold for the Krawczyk operator

Kf (x)
def
= x̌− [Df(x̌)]−1f(x̌)−

(
1− [Df(x̌)]−1F ′(x)

)
[−r, r],

where we use the notation r = rad(x).

Newton’s method in IR

Algorithm

Starting from an initial search region x0, we form the sequence

xi+1 = Nf (xi) ∩ xi i = 0, 1,

Newton’s method in IR

Algorithm

Starting from an initial search region x0, we form the sequence

xi+1 = Nf (xi) ∩ xi i = 0, 1,

xi
xi+1

Nf (xi)

x̌i

Newton’s method in IR

Algorithm

Starting from an initial search region x0, we form the sequence

xi+1 = Nf (xi) ∩ xi i = 0, 1,

xi
xi+1

Nf (xi)

x̌i

Performance

If well-defined, this method is never worse than bisection, and it
converges quadratically fast under mild conditions.

Newton’s method in IR

Example

Take f(x) = −2.001 + 3x− x3 and start with x0 = [−3,−3/2].

Newton’s method in IR

Example

Take f(x) = −2.001 + 3x− x3 and start with x0 = [−3,−3/2].

X(0) = [-3.000000000000000,-1.500000000000000]; rad = 7.50000e-01

X(1) = [-2.140015625000001,-1.546099999999996]; rad = 2.96958e-01

X(2) = [-2.140015625000001,-1.961277398284108]; rad = 8.93691e-02

X(3) = [-2.006849239640351,-1.995570580247208]; rad = 5.63933e-03

X(4) = [-2.000120104486270,-2.000103608530276]; rad = 8.24798e-06

X(5) = [-2.000111102890393,-2.000111102873815]; rad = 8.28893e-12

X(6) = [-2.000111102881727,-2.000111102881724]; rad = 1.55431e-15

X(7) = [-2.000111102881727,-2.000111102881724]; rad = 1.55431e-15

Finite convergence!

Unique root in -2.00011110288172 +- 1.555e-15

Newton’s method in IR

Example

Take f(x) = −2.001 + 3x− x3 and start with x0 = [−3,−3/2].

X(0) = [-3.000000000000000,-1.500000000000000]; rad = 7.50000e-01

X(1) = [-2.140015625000001,-1.546099999999996]; rad = 2.96958e-01

X(2) = [-2.140015625000001,-1.961277398284108]; rad = 8.93691e-02

X(3) = [-2.006849239640351,-1.995570580247208]; rad = 5.63933e-03

X(4) = [-2.000120104486270,-2.000103608530276]; rad = 8.24798e-06

X(5) = [-2.000111102890393,-2.000111102873815]; rad = 8.28893e-12

X(6) = [-2.000111102881727,-2.000111102881724]; rad = 1.55431e-15

X(7) = [-2.000111102881727,-2.000111102881724]; rad = 1.55431e-15

Finite convergence!

Unique root in -2.00011110288172 +- 1.555e-15

Stopping condition

Stop when no further improvement takes place.

The Krawczyk method with bisection

When we have several zeros, we must bisect to isolate the zeros.

Example

Take f(x) = sin (ex + 1) and start with x0 = [0, 3].

The Krawczyk method with bisection

When we have several zeros, we must bisect to isolate the zeros.

Example

Take f(x) = sin (ex + 1) and start with x0 = [0, 3].

Domain : [0, 3]

Tolerance : 1e-10

Function calls : 71

Unique zero in the interval 0.761549782880[8890,9006]

Unique zero in the interval 1.664529193[6825445,7060436]

Unique zero in the interval 2.131177121086[2673,3558]

Unique zero in the interval 2.4481018026567[773,801]

Unique zero in the interval 2.68838906601606[36,68]

Unique zero in the interval 2.8819786295709[728,1555]

The Krawczyk method with bisection

When we have several zeros, we must bisect to isolate the zeros.

Example

Take f(x) = sin (ex + 1) and start with x0 = [0, 3].

Domain : [0, 3]

Tolerance : 1e-10

Function calls : 71

Unique zero in the interval 0.761549782880[8890,9006]

Unique zero in the interval 1.664529193[6825445,7060436]

Unique zero in the interval 2.131177121086[2673,3558]

Unique zero in the interval 2.4481018026567[773,801]

Unique zero in the interval 2.68838906601606[36,68]

Unique zero in the interval 2.8819786295709[728,1555]

Applications

Counting short periodic orbits for ODEs [Z. Galias]
Measuring the stable regions of the quadratic map [D. Wilczak]

Implicit curves (level sets)

Example

Draw the level-set defined by

f(x, y) = sin (cos x2 + 10 sin y2)− y cos x = 0;

restricted to the domain [−5, 5] × [−5, 5].

Implicit curves (level sets)

Example

Draw the level-set defined by

f(x, y) = sin (cos x2 + 10 sin y2)− y cos x = 0;

restricted to the domain [−5, 5] × [−5, 5].

MATLAB produces the following picture:

−5 0 5
−5

0

5

Implicit curves (level sets)

Example

Draw the level-set defined by

f(x, y) = sin (cos x2 + 10 sin y2)− y cos x = 0;

restricted to the domain [−5, 5] × [−5, 5].

MATLAB produces the following picture:

−5 0 5
−5

0

5

According to the same m-file, the
level set defined by |f(x, y)| = 0,
however, appears to be empty.

But this is the same set!!!

Implicit curves

The (increasingly tight) set-valued enclosures in both cases are

Implicit curves

The (increasingly tight) set-valued enclosures in both cases are

Quadrature

Example (A bonus problem)

Compute the integral
∫ 8
0 sin

(
x+ ex

)
dx.

Quadrature

Example (A bonus problem)

Compute the integral
∫ 8
0 sin

(
x+ ex

)
dx.

A regular MATLAB session:

>> q = quad(’sin(x + exp(x))’, 0, 8)

q =

0.251102722027180

Quadrature

Example (A bonus problem)

Compute the integral
∫ 8
0 sin

(
x+ ex

)
dx.

A regular MATLAB session:

>> q = quad(’sin(x + exp(x))’, 0, 8)

q =

0.251102722027180

Using an adaptive validated integrator:

$$./adQuad 0 8 4 1e-4

Partitions: 8542

CPU time : 0.52 seconds

Integral : 0.347[3863144222905,4140198005782]

Quadrature

Example (A bonus problem)

Compute the integral
∫ 8
0 sin

(
x+ ex

)
dx.

A regular MATLAB session:

>> q = quad(’sin(x + exp(x))’, 0, 8)

q =

0.251102722027180

Using an adaptive validated integrator:

$$./adQuad 0 8 4 1e-4

Partitions: 8542

CPU time : 0.52 seconds

Integral : 0.347[3863144222905,4140198005782]

$$./adQuad 0 8 20 1e-10

Partitions: 874

CPU time : 0.45 seconds

Integral : 0.3474001726[492276,652638]

Parameter estimation

Problem formulation

Given a finitely parametrized model function together with some
(noisy) data, and a search region P in parameter space:

y = f(x; p)
︸ ︷︷ ︸

model

{(xi, yi)}Ni=1
︸ ︷︷ ︸

data

p ∈ P
︸ ︷︷ ︸

space

try to find parameters that give a good agreement between the
data and the model. [A classic inverse problem]

Parameter estimation

Problem formulation

Given a finitely parametrized model function together with some
(noisy) data, and a search region P in parameter space:

y = f(x; p)
︸ ︷︷ ︸

model

{(xi, yi)}Ni=1
︸ ︷︷ ︸

data

p ∈ P
︸ ︷︷ ︸

space

try to find parameters that give a good agreement between the
data and the model. [A classic inverse problem]

Existence: with noisy data, or with an incorrect model, there
is usually no parameter that produces a perfect fit.

Parameter estimation

Problem formulation

Given a finitely parametrized model function together with some
(noisy) data, and a search region P in parameter space:

y = f(x; p)
︸ ︷︷ ︸

model

{(xi, yi)}Ni=1
︸ ︷︷ ︸

data

p ∈ P
︸ ︷︷ ︸

space

try to find parameters that give a good agreement between the
data and the model. [A classic inverse problem]

Existence: with noisy data, or with an incorrect model, there
is usually no parameter that produces a perfect fit.

Uniqueness: even with unlimited amounts of exact data,
there might not exist a unique solution p♯ ∈ P such that

f(xi; p
♯) = yi i = 1, . . . , N.

Parameter estimation

Problem formulation

Given a finitely parametrized model function together with some
(noisy) data, and a search region P in parameter space:

y = f(x; p)
︸ ︷︷ ︸

model

{(xi, yi)}Ni=1
︸ ︷︷ ︸

data

p ∈ P
︸ ︷︷ ︸

space

try to find parameters that give a good agreement between the
data and the model. [A classic inverse problem]

Existence: with noisy data, or with an incorrect model, there
is usually no parameter that produces a perfect fit.

Uniqueness: even with unlimited amounts of exact data,
there might not exist a unique solution p♯ ∈ P such that

f(xi; p
♯) = yi i = 1, . . . , N.

Instability: inverse problems can be extremely ill-conditioned.

Introduction

A statistical approach

Use a (weighted) least-squares approach to find the best
parameter:

argmin
p∈P

N∑

i=1

wi|f(xi; p)− yi|2.

Introduction

A statistical approach

Use a (weighted) least-squares approach to find the best
parameter:

argmin
p∈P

N∑

i=1

wi|f(xi; p)− yi|2.

If the parameters enter f linearly, this is “straight-forward”.

Introduction

A statistical approach

Use a (weighted) least-squares approach to find the best
parameter:

argmin
p∈P

N∑

i=1

wi|f(xi; p)− yi|2.

If the parameters enter f linearly, this is “straight-forward”.

Otherwise, we have moved the problem to global optimization.

Introduction

A statistical approach

Use a (weighted) least-squares approach to find the best
parameter:

argmin
p∈P

N∑

i=1

wi|f(xi; p)− yi|2.

If the parameters enter f linearly, this is “straight-forward”.

Otherwise, we have moved the problem to global optimization.

The selection of weights is almost always a delicate issue.

Introduction

A statistical approach

Use a (weighted) least-squares approach to find the best
parameter:

argmin
p∈P

N∑

i=1

wi|f(xi; p)− yi|2.

If the parameters enter f linearly, this is “straight-forward”.

Otherwise, we have moved the problem to global optimization.

The selection of weights is almost always a delicate issue.

A set-valued approach

Locate nearby models that are consistent with nearby data:

f(x; p) −→ f(x;p) (xi, yi) −→ (xi,yi).

Set-valued computations

Points versus sets in parameter space

We move from the point-valued model function f(x; p) to the
set-valued version f(x;p).

Set-valued computations

Points versus sets in parameter space

We move from the point-valued model function f(x; p) to the
set-valued version f(x;p).

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

Figure: (a) p = 0.15, a point in P . (b) p = [0.14, 0.16], a subset of P .
The model function is f(x; p) = xe−px, and 10 samples are shown.

Parameter estimation

Strategy

Adaptively bisect the parameter space into sub-boxes: P = ∪K
j=1pj

and examine each pj separately. [Good for parallelisation]

Parameter estimation

Strategy

Adaptively bisect the parameter space into sub-boxes: P = ∪K
j=1pj

and examine each pj separately. [Good for parallelisation]

Each sub-box p of the parameter space falls into one of three
categories:

Parameter estimation

Strategy

Adaptively bisect the parameter space into sub-boxes: P = ∪K
j=1pj

and examine each pj separately. [Good for parallelisation]

Each sub-box p of the parameter space falls into one of three
categories:

(1) consistent

if f(xi;p) ⊂ yi for all i = 0, . . . , N . SAVE

Parameter estimation

Strategy

Adaptively bisect the parameter space into sub-boxes: P = ∪K
j=1pj

and examine each pj separately. [Good for parallelisation]

Each sub-box p of the parameter space falls into one of three
categories:

(1) consistent

if f(xi;p) ⊂ yi for all i = 0, . . . , N . SAVE

(2) inconsistent

if f(xi;p) ∩ yi = ∅ for at least one i. DROP

Parameter estimation

Strategy

Adaptively bisect the parameter space into sub-boxes: P = ∪K
j=1pj

and examine each pj separately. [Good for parallelisation]

Each sub-box p of the parameter space falls into one of three
categories:

(1) consistent

if f(xi;p) ⊂ yi for all i = 0, . . . , N . SAVE

(2) inconsistent

if f(xi;p) ∩ yi = ∅ for at least one i. DROP

(3) undetermined

not (1), but f(xi;p) ∩ yi 6= ∅ for all i = 0, . . . , N . SPLIT

Parameter estimation

Example

Consider the model function

f(x; p1, p2) = 5e−p1x − 4× 10−6e−p2x

with samples taken at x = 0, 5 . . . , 40 using p♯ = (0.11,−0.32).
Accepting a relative noise level of 90%, we get the following set of
consistent parameters:

Parameter estimation

Example

Consider the model function

f(x; p1, p2) = 5e−p1x − 4× 10−6e−p2x

with samples taken at x = 0, 5 . . . , 40 using p♯ = (0.11,−0.32).
Accepting a relative noise level of 90%, we get the following set of
consistent parameters:

Parameter estimation

Varying the relative noise levels between 10, 20 . . . , 90%, we get
the following indeterminate sets.

Constraint propagation

Constraining the parameter/data space

We use set-valued constraint propagation to quickly discard
inconsistent regions in the data and the parameter space.

This is done without bisection!

Constraint propagation

Constraining the parameter/data space

We use set-valued constraint propagation to quickly discard
inconsistent regions in the data and the parameter space.

This is done without bisection!

Example

Let f(x; p) = xe−px, and consider the situation p = [0, 1] and
(x,y) = (2, [1, 3]).

Constraint propagation

Constraining the parameter/data space

We use set-valued constraint propagation to quickly discard
inconsistent regions in the data and the parameter space.

This is done without bisection!

Example

Let f(x; p) = xe−px, and consider the situation p = [0, 1] and
(x,y) = (2, [1, 3]). By a forward (interval) evaluation, we have

f(2; [0, 1]) = 2e−2[0,1] = 2e[−2,0] = 2[e−2, 1] = [2e−2, 2].

Constraint propagation

Constraining the parameter/data space

We use set-valued constraint propagation to quickly discard
inconsistent regions in the data and the parameter space.

This is done without bisection!

Example

Let f(x; p) = xe−px, and consider the situation p = [0, 1] and
(x,y) = (2, [1, 3]). By a forward (interval) evaluation, we have

f(2; [0, 1]) = 2e−2[0,1] = 2e[−2,0] = 2[e−2, 1] = [2e−2, 2].

This allows us to contract the data range according to

y 7→ y ∩ f(x;p) = [1, 3] ∩ [2e−2, 2] = [1, 2].

Constraint propagation

Directed Acyclic Graphs (DAGs)

We use a DAG representation of the model function to automate
constraint propagations.

Constraint propagation

Directed Acyclic Graphs (DAGs)

We use a DAG representation of the model function to automate
constraint propagations.

x

p

×

× neg exp

n1

n2

n3 n4 n5

n6 = y

Constraint propagation

Directed Acyclic Graphs (DAGs)

We use a DAG representation of the model function to automate
constraint propagations.

x

p

×

× neg exp

n1

n2

n3 n4 n5

n6 = y

n1 = x

n2 = p

n3 = n1 × n2

n4 = −n3

n5 = en4

n6 = n1 × n5.

Figure: The DAG representation of a forward sweep of y = xe−px,
together with the corresponding code list.

Constraint propagation

Directed Acyclic Graphs (DAGs)

We can propagate constraints from data to the parameter by
moving backwards in the code list.

Constraint propagation

Directed Acyclic Graphs (DAGs)

We can propagate constraints from data to the parameter by
moving backwards in the code list.

x

y

÷

÷neg log

n1p = n2

n3 n4 n5

n6

Constraint propagation

Directed Acyclic Graphs (DAGs)

We can propagate constraints from data to the parameter by
moving backwards in the code list.

x

y

÷

÷neg log

n1p = n2

n3 n4 n5

n6

n5 = n6 ÷ n1

n4 = log n5

n3 = −n4

n2 = n3 ÷ n1.

Figure: The DAG representation of a backward sweep of
y = xe−px, together with the corresponding code list.

Constraint propagation

Example

Again, we work on the model function y = f(x; p) = xe−px, but
now with the data (x,y) = (2, [1, 3]), together with the parameter
domain p = [0, 1].

Constraint propagation

Example

Again, we work on the model function y = f(x; p) = xe−px, but
now with the data (x,y) = (2, [1, 3]), together with the parameter
domain p = [0, 1]. The forward sweep, performed in Example 7,
contracts the interval data to y = [1, 2].

Constraint propagation

Example

Again, we work on the model function y = f(x; p) = xe−px, but
now with the data (x,y) = (2, [1, 3]), together with the parameter
domain p = [0, 1]. The forward sweep, performed in Example 7,
contracts the interval data to y = [1, 2]. Performing a backward
sweep contracts the interval parameter to p = [0, 12 log 2]:

n5 = n6 ÷ n1 = [1, 2] ÷ 2 = [12 , 1]
n4 = log n5 = log [12 , 1] = [− log 2, 0]
n3 = −n4 = [0, log 2]
n2 = n3 ÷ n1 = [0, log 2]÷ 2 ≈ [0, 0.34657359].

Constraint propagation

Example

Again, we work on the model function y = f(x; p) = xe−px, but
now with the data (x,y) = (2, [1, 3]), together with the parameter
domain p = [0, 1]. The forward sweep, performed in Example 7,
contracts the interval data to y = [1, 2]. Performing a backward
sweep contracts the interval parameter to p = [0, 12 log 2]:

n5 = n6 ÷ n1 = [1, 2] ÷ 2 = [12 , 1]
n4 = log n5 = log [12 , 1] = [− log 2, 0]
n3 = −n4 = [0, log 2]
n2 = n3 ÷ n1 = [0, log 2]÷ 2 ≈ [0, 0.34657359].

Note that, in one forward/backward sweep, we managed to exclude
over 65% of the parameter domain, at the same time reducing the
data uncertainty by 50%.

Mixed-effects models

Mixed-effects models

We are given several data sets (trajectories) corresponding to k
different “individuals”:

individual1 : (x11, y11), (x12, y12), . . . , (x1N , y1N1
)

individual2 : (x21, y21), (x22, y22), . . . , (x2N , y2N2
)

...
...

...

individualk : (xk1, yk1), (xk2, yk2), . . . , (xkN , ykNk
).

Some model parameters are equal (shared) for all individuals, and
some are distinct.

Mixed-effects models

Mixed-effects models

We are given several data sets (trajectories) corresponding to k
different “individuals”:

individual1 : (x11, y11), (x12, y12), . . . , (x1N , y1N1
)

individual2 : (x21, y21), (x22, y22), . . . , (x2N , y2N2
)

...
...

...

individualk : (xk1, yk1), (xk2, yk2), . . . , (xkN , ykNk
).

Some model parameters are equal (shared) for all individuals, and
some are distinct.

We need to consider all individuals simultaneously. Otherwise
the number of unknown parameters may be too large.

A mixed-effects model for orange tree truncs

Example

We will apply our method to the following scenario:

A mixed-effects model for orange tree truncs

Example

We will apply our method to the following scenario:

Model function: f(x; p) =
p1

1 + p2ep3x

A mixed-effects model for orange tree truncs

Example

We will apply our method to the following scenario:

Model function: f(x; p) =
p1

1 + p2ep3x

Individual parameter: pi1 = p♯1 + ηi, ηi ∼ N(0, σ2)

A mixed-effects model for orange tree truncs

Example

We will apply our method to the following scenario:

Model function: f(x; p) =
p1

1 + p2ep3x

Individual parameter: pi1 = p♯1 + ηi, ηi ∼ N(0, σ2)

Data perturbation: yij = y♯ij(1 + θij), θij ∼ U(−ǫ,+ǫ)

A mixed-effects model for orange tree truncs

Example

We will apply our method to the following scenario:

Model function: f(x; p) =
p1

1 + p2ep3x

Individual parameter: pi1 = p♯1 + ηi, ηi ∼ N(0, σ2)

Data perturbation: yij = y♯ij(1 + θij), θij ∼ U(−ǫ,+ǫ)

For this specific example, we will use Np ∈ {1, 2, 5, 50} subjects,
sampled at Nd = 10 data sites, evenly spaced within [100, 1600].

A mixed-effects model for orange tree truncs

Example

We will apply our method to the following scenario:

Model function: f(x; p) =
p1

1 + p2ep3x

Individual parameter: pi1 = p♯1 + ηi, ηi ∼ N(0, σ2)

Data perturbation: yij = y♯ij(1 + θij), θij ∼ U(−ǫ,+ǫ)

For this specific example, we will use Np ∈ {1, 2, 5, 50} subjects,
sampled at Nd = 10 data sites, evenly spaced within [100, 1600].

Target parameters:
p♯ = (191.84, 8.153,−0.0029), σ = 20, ǫ ∈ {0.01, 0.1, 0.2, 0.5}.

A mixed-effects model for orange tree truncs

Example

We will apply our method to the following scenario:

Model function: f(x; p) =
p1

1 + p2ep3x

Individual parameter: pi1 = p♯1 + ηi, ηi ∼ N(0, σ2)

Data perturbation: yij = y♯ij(1 + θij), θij ∼ U(−ǫ,+ǫ)

For this specific example, we will use Np ∈ {1, 2, 5, 50} subjects,
sampled at Nd = 10 data sites, evenly spaced within [100, 1600].

Target parameters:
p♯ = (191.84, 8.153,−0.0029), σ = 20, ǫ ∈ {0.01, 0.1, 0.2, 0.5}.

Search region:
P = ([0, 300], [0, 9], [−1, 0]).

A mixed-effects model for orange tree truncs

0 200 400 600 800 1000 1200 1400 1600
0

50

100

150

200

250

Figure: Data inflation and contraction for the example. The graph of the
model function for one subject (blue line). The data points are marked
with red dots. The inflated data sets are shown as striped bars, and the
re-contracted data as green bars.

A mixed-effects model for orange tree truncs

Numerical results

Np = 1 Np = 2

ǫ = 0.01 190.639 (– –) (0.010) 193.141 (19.6) (0.013)
ǫ = 0.1 194.139 (– –) (0.092) 195.233 (21.1) (0.097)
ǫ = 0.2 189.139 (– –) (0.190) 193.437 (20.3) (0.192)
ǫ = 0.5 167.226 (– –) (0.604) 167.770 (26.6) (0.589)

Np = 5 Np = 50

ǫ = 0.01 191.675 (20.1) (0.014) 191.239 (20.1) (0.012)
ǫ = 0.1 192.954 (21.4) (0.099) 198.428 (22.2) (0.110)
ǫ = 0.2 191.773 (20.3) (0.203) 197.580 (23.6) (0.214)
ǫ = 0.5 164.656 (23.9) (0.620) 174.318 (27.1) (0.618)

Table: The results of four experiments for the example, each using
100 trial runs with p1 = 191.184, and σ = 20.0. For each pair
(ǫ,Np), we display the triple µ(p1), µ(σ), and µ(ǫ) – the average
estimates of the distribution parameters for p1, and the data error.

A mixed-effects model for orange tree truncs

202
204

206
208

210
212

8.1

8.15

8.2

−2.98

−2.97

−2.96

−2.95

−2.94

x 10
−3

p1p2

p3

Figure: The set of consistent parameters for two subjects from the
example.

Conclusions

Conclusions

Standard numerics does not produce mathematics.

Conclusions

Standard numerics does not produce mathematics.

Set-valued mathematics enables validated numerics.

Conclusions

Standard numerics does not produce mathematics.

Set-valued mathematics enables validated numerics.

Existence (uniqueness) comes from fixed point theorems.

Conclusions

Standard numerics does not produce mathematics.

Set-valued mathematics enables validated numerics.

Existence (uniqueness) comes from fixed point theorems.

Set-valued methods are suitable for inverse problems.

Conclusions

Standard numerics does not produce mathematics.

Set-valued mathematics enables validated numerics.

Existence (uniqueness) comes from fixed point theorems.

Set-valued methods are suitable for inverse problems.

Parameter estimation is done via relaxation.

Conclusions

Standard numerics does not produce mathematics.

Set-valued mathematics enables validated numerics.

Existence (uniqueness) comes from fixed point theorems.

Set-valued methods are suitable for inverse problems.

Parameter estimation is done via relaxation.

The relaxed problem is solved via set inversion.

Further study...

Interval Computations Web Page

http://www.cs.utep.edu/interval-comp

Further study...

Interval Computations Web Page

http://www.cs.utep.edu/interval-comp

INTLAB – INTerval LABoratory

http://www.ti3.tu-harburg.de/~rump/intlab/

Further study...

Interval Computations Web Page

http://www.cs.utep.edu/interval-comp

INTLAB – INTerval LABoratory

http://www.ti3.tu-harburg.de/~rump/intlab/

CXSC – C eXtensions for Scientific Computation

http://www.xsc.de/

Further study...

Interval Computations Web Page

http://www.cs.utep.edu/interval-comp

INTLAB – INTerval LABoratory

http://www.ti3.tu-harburg.de/~rump/intlab/

CXSC – C eXtensions for Scientific Computation

http://www.xsc.de/

CAPA – Computer–Aided Proofs in Analysis

http://www.math.uu.se/~warwick/CAPA/

A short message from your sponsors...

Validated Numerics:

A Short Introduction to Rigorous

Computations

Warwick Tucker

Princeton University Press, 2011

ISBN: 9780691147819

152 pp.|6 x 9|41 illus.|12 tables.

USD 45.00/GBP 30.95

http://press.princeton.edu/titles/9488.html

http://press.princeton.edu/titles/9488.html

