
First Exam for Course 1DL023:

Constraint Technology for

Solving Combinatorial Problems

Autumn 2008, Uppsala University, Sweden

Prepared by Pierre Flener

Friday 17 October 2008, from 14:00 to 19:00, in Polacksbacken

Cover Sheet

Materials: This is an individual, written, closed-world exam: no written or printed material
(except dictionaries) is allowed, nor any electronic devices. Preferably use a pencil.

Grading: The grade scale is as follows, when your exam mark (plus any bonus points from the
assignments) is x out of 100 exam points:

Swedish Grade ECTS Grade Condition

5 A 90 ≤ x ≤ 100
5 B 80 ≤ x ≤ 89
4 C 65 ≤ x ≤ 79
3 D 58 ≤ x ≤ 64
3 E 50 ≤ x ≤ 57
U FX 40 ≤ x ≤ 49
U F 0 ≤ x ≤ 39

Help: Normally, an instructor will attend this exam from 16:00 to 17:00.

Answers: Your answers must be written in English. You must show how you reached each
answer, unless stated otherwise in the question. Unreadable or unclear answers get zero points.
The answer to each question must be started on a new sheet; you can use both sides of each
sheet. Write your name on each answer sheet. This cover sheet must be handed in together
with your answers. Circle below which questions you have actually addressed:

Question Solution Provided? Points Your Mark
1 yes / no 10
2 yes / no 15
3 yes / no 30
4 yes / no 20
5 yes / no 25

Total: 100

Identity: Name & Civic Registration Number: .

Question 1: Constraint Technology

If you met the instructor again in a few years and wanted to tell him what you remembered
from this course, how would you succinctly formulate (within the allocated space on this page):

A. The essential features of constraint-based complete search. (5 points)

B. The essential features of constraint-based local search. (3 points)

C. The relationship between these essential features of these two approaches to combinatorial
problem solving offered by constraint technology. (2 points)

Question 2: Stores and Propagators

For each of the functions below on stores:

a. State (without proof) whether it is a propagator or not, and give a counterexample if not.

b. Identify (without proof) the implemented constraint, if it is a propagator.

c. State (without proof) whether it is idempotent or not, and give a counterexample if not.

d. State (without proof) whether it is subsumed (entailed) or not after the first invocation,
and give a counterexample if not.

Let \ denote set subtraction (hence S1 \S2 denotes the subset of elements of set S1 that do not
belong to set S2).

A. (4 points)

p1(s) =

{

x 7→ {n ∈ s(x) | n ≤ 2},
y 7→ {n ∈ s(y) | n ≥ 3}

}

B. (5 points)

p2(s) =

{

x 7→ s(x) \ {1},
y 7→ if s(y) ⊆ s(x) then s(y) else s(y) \ {2, 3, 4}

}

C. (6 points)

p3(s) =







x 7→ {n ∈ s(x) | min(s(z)) − max(s(y)) ≤ n ≤ max(s(z)) − min(s(y))},
y 7→ {n ∈ s(y) | min(s(z)) − max(s(x)) ≤ n ≤ max(s(z)) − min(s(x))},
z 7→ {n ∈ s(z) | min(s(x)) + min(s(y)) ≤ n ≤ max(s(x)) + max(s(y))}







Question 3: Consistency, Propagation, and Search

Quoting from the web-page of a very interesting course:

There are two assignments to do during the course. [. . .] Each assignment is worth
10 assignment points. [. . .] There is a mandatory project to do by the end of the
course. [. . .] The project is worth 20 project points. [. . .] The two assignments and
the project are worth 3 higher-education credits (ECTS credits): Pass, if you get at
least 12 project points and your sum of assignment points and project points is at
least 22; Fail, otherwise.

Perform the following tasks:

A. Model the problem of finding numbers of points for the assignments and project that yield
the 3 credits. Follow the modelling instructions at the bottom of Question 5. (Do not
call any of the decision variables P , p, c, or N , with or without subscript, because these
identifiers have another meaning in the remainder of the question.) (4 points)

B. Using the propagate algorithm seen in the course, namely the version with events (also
known as propagation conditions) and status messages (but without the set MV of mod-
ified decision variables), perform the pre-search propagation. (5 points)

The following propagation choices are imposed: Achieve bounds consistency for all the
constraints. Post the constraints in the order in which they appear in the quoted text
above. Use a first-in first-out queue for implementing the collection N of propagators
that are not known to be at fixpoint. Consider a node of the search tree to be solved when
all its propagators are entailed (subsumed).

In other words, letting pi be the propagator of the ith constraint ci:

(a) Give (without proof) the smallest set es(pi) of events that trigger the enqueuing of
propagator pi, for each i, so that a strictly stronger store is obtained.

(b) Give the initial store.

(c) Give the initial value of the set P of all non-subsumed propagators.

(d) Give the initial value of the queue N of propagators not known to be at fixpoint.

(e) Give the following information after every iteration of propagate:

Picked propagator: . . .
Store: . . .
Status message: ‘subsumed’, ‘at fixpoint’, or ‘not known to be at fixpoint’
Raised events: {. . . } ⊆ {any(?),fix (?),min(?),max (?)}
Set of dependent propagators: DP = {. . . }
P = {. . . }
N = [. . .]

C. If the pre-search propagation has not solved the problem, draw the entire search tree, from
the moment where a student has earned 2 points on the first assignment and knows that
s/he will not have the time for answering a project question worth 4 points. (21 points)

The propagation choices above and the following branching heuristics are imposed: Use
the smallest-domain variable ordering heuristic (INT VAR SIZE MIN in Gecode/J). Use
the lower-half-first value ordering heuristic (INT VAL SPLIT MIN in Gecode/J).

In other words, after propagating the additional information, interleave branching with
propagation. Use the answer template of sub-question (Be) when propagating.

Question 4: Propagation for the distinct Global Constraint

Consider the instance below of the Sudoku puzzle, where the task is to fill the cells of the 9× 9
grid with integer values in the range 1, . . . , 9 such that the cells of each row, each column, and
each highlighted 3 × 3 block are pairwise different:

6 1 4 5

8 3 5 6

2 1

8 4 7 6

6 3

7 9 1 4

5 2

7 2 6 9

4 5 8 7

Perform the following sequence of tasks, on the straightforward constraint model of this prob-
lem (seen in the course):

A. Propagate each constraint to value consistency; only indicate the domains in the re-
sulting store for the decision variables of the top-left 3 × 3 block. (We only do this first
task in order to make the following task more interesting than it would otherwise be.)
(3 points)

B. Propagate the constraint on the top-left 3× 3 block to domain consistency using Jean-
Charles Régin’s propagator (1994), showing in full detail (with colours, if you want) what
you are doing. Is there any aspect of the underlying theorem by Claude Berge (1970) that
is unnecessary? Why? (12 points)

C. What does Régin’s propagator do when there are fewer values than decision variables?
Why? (2 points)

D. Is Régin’s propagator idempotent? Why? (1 point)

E. When can Régin’s propagator signal subsumption? Why? (2 points)

Question 5: Modelling

Consider the Tourist Site Competition (TSC) problem. Given three non-negative integers r,
k, λ and given a set Cities of touristic cities and a set Judges of judges, construct an assignment
of judges to cities such that the following constraints are satisfied:

(constant jury) Every touristic city is visited by r judges.

(constant load) Every judge visits k touristic cities.

(fairness) Every pair of touristic cities is visited by λ common judges.

For instance, solutions exist for |Cities| = 7 = |Judges| with r = 3 = k and λ = 1.

Answer the following sub-questions:

A. Model the TSC problem for any instance. Show how some, if any, of the constraints
named above are automatically enforced by your choice of decision variables. Relate each
of your constraints to one of the named constraints above, or declare it to be a channelling
constraint. (16 points)

B. Identify the variable and value symmetries in your model. Show how some, if any, of the
symmetries of the problem are broken by your model. (3 points)

C. Break as many of the symmetries of your model as reasonable. (3 points)

D. Give suitable branching heuristics. (3 points)

Your model should be clear and comprehensible, say such that your classmates can understand
and implement it without difficulty. Write it in pseudocode, as on the modelling lecture slides.
The instance data, as well as the decision variables and their domains must be
declared, possibly in mathematical notation, and their meanings must be given. You
may use standard mathematical and logical notations, such as M [i, j] (to designate the element
in row i and column j of a matrix M ; you can only use this notation when each index
is a constant, or ⋆ in case you want to extract an entire slice of the matrix),

∑

i∈S e(i) (to
designate the sum over all i in the set/enumeration/range S of the numerical expressions e(i)),
∀i ∈ S : α(i) (to express that for all i in S, the formula α(i) is true), ∧ (and), ↔ (is equivalent
to; use this for reification or channelling), → (implies; use this for channelling), and so on. Try
hard to avoid ∨ (or). You may not use ∃i ∈ S : α(i) (to express that there exists an i in S such
that α(i) is true), nor ∃!i ∈ S : α(i) (to express that there exists exactly one i in S such that
α(i) is true), nor negation. You can only use the following global constraints:

• element(〈i1, . . . , in〉, x, y), where i1, . . . , in, x, y are integers or decision variables, enforces
that y is equal to the xth element of the sequence 〈i1, . . . , in〉, that is ix = y.

• gcc(〈x1, . . . , xn〉, 〈v1, . . . , vm〉, 〈min1, . . . ,minm〉, 〈max 1, . . . ,maxm〉) enforces that the num-
ber of elements in the decision-variable sequence 〈x1, . . . , xn〉 that take the constant value
vj is between the integer constants minj and max j inclusive, for all j ∈ 1, . . . , m.

• lex (〈x1, . . . , xn〉, 〈y1, . . . , yn〉) enforces that the decision-variable sequence 〈x1, . . . , xn〉 is
lexicographically smaller than or equal to the decision-variable sequence 〈y1, . . . , yn〉.

• linear(〈c1, . . . , cn〉, 〈x1, . . . , xn〉, R, d) enforces that the scalar product of the integer se-
quence 〈c1, . . . , cn〉 with the decision-variable sequence 〈x1, . . . , xn〉 is in relation R with
the integer d, where R ∈ {<,≤, =, 6=,≥, >}, that is (

∑n
i=1

ci · xi) R d.

