
First Exam for Course 1DL023:

Constraint Technology for

Solving Combinatorial Problems

Autumn 2009, Uppsala University, Sweden

Prepared by Pierre Flener

Wednesday 21 October 2009, from 08:00 to 13:00, in Polacksbacken

Materials: This is a closed-book exam. The usage of electronic devices is not allowed.

Grading: The grade scale is as follows, when your exam mark (plus any bonus points from the
assignments) is x out of 100 exam points:

Swedish Grade ECTS Grade Condition
5 A 90 ≤ x ≤ 100
5 B 80 ≤ x ≤ 89
4 C 65 ≤ x ≤ 79
3 D 58 ≤ x ≤ 64
3 E 50 ≤ x ≤ 57
U FX 40 ≤ x ≤ 49
U F 0 ≤ x ≤ 39

Help: Normally, an instructor will attend this exam from 10:00 to 11:00.

Answers: Your answers must be written in English. Provide only the requested information
and nothing else. Unreadable, unintelligible, and irrelevant answers will not be considered. Be
concise and write each answer immediately behind its question and attach extra solution
pages only for Question 3: if your answer does not fit into the provided space, then it is
unnecessarily long and maybe you should re-read the question. Always show all the details
of your reasoning, and make explicit all your assumptions. This question set is double-sided.
Circle below which questions you have actually addressed:

Question Solution Provided? Max Points Your Mark
1 yes / no 18
2 yes / no 30
3 yes / no 32
4 yes / no 20

Total: 100

Identity: Name & personal number: .

Question 1: Stores and Propagators (18 points)

For each of the functions below on stores, answer (on this page) the following questions:

a. State (without proof) whether it is a propagator (contracting and monotonic) or not, and
give a counterexample if not. Careful: Also consider failed stores!

b. Identify (without proof) the implemented constraint, if it is a propagator when it is applied
to non-failed stores only.

c. State (without proof) whether it is idempotent or not, and give a counterexample if not.

d. State (without proof) whether it is subsumed (or: entailed) or not after invocation, and
give a counterexample if not, assuming it is applied to non-failed stores only.

Careful: Items c. and d. are meaningful even if (you think that) the function is not a propagator!
Let S \ T denote the subset of elements of set S that do not belong to set T .

A. p1(s) =
{

x 7→ ∅, y 7→ ∅
}

a. Propagator (yes/no+counterexample):

b. Implements . . .

c. Idempotent (yes/no+counterexample):

d. Subsumed (yes/no+counterexample):

B. p2(s) =
{

x 7→ if |s(y)| = 1 then s(x) \ s(y) else s(x), y 7→ if |s(x)| = 1 then s(y) \ s(x) else s(y)
}

a. Propagator (yes/no+counterexample):

b. Implements . . .

c. Idempotent (yes/no+counterexample):

d. Subsumed (yes/no+counterexample):

C. p3(s) =
{

x 7→ s(x) ∩ s(y), y 7→ s(x) ∩ s(y)
}

a. Propagator (yes/no+counterexample):

b. Implements . . .

c. Idempotent (yes/no+counterexample):

d. Subsumed (yes/no+counterexample):

Question 2: Consistency, Propagation, and Search (30 points)

Consider the following named constraints over decimal digits:

x + y ≤ 3 (c)
y + z ≤ 4 (d)

x < y (e)
y < z (f)

Answer (on this page and on the next two pages) the following sub-questions:

A. Using the propagate “master” algorithm seen in the course, namely the version with
events (also known as propagation conditions) and status messages (but without the set
MV of modified decision variables), you will perform the pre-search propagation in this
sub-question. The following propagation choices are imposed:

• Use idempotent propagators achieving bounds consistency for all the constraints.

• Post the constraints in the textual order in which they appear above.

• Handle the decision variables in the textual order in which they appear above.

• Use a first-in first-out queue for implementing the collection N of propagators
that are not known to be at fixpoint.

In other words, and by identifying each propagator with the constraint it implements:

(a) Give (here, and without proof) the smallest set of events that trigger the enqueu-
ing of the propagator of each constraint, so that a strictly stronger store might be
obtained or that subsumption might be detected:

es(c) = { }

es(d) = { }

es(e) = { }

es(f) = { }
(b) Fill in the table on the next page for the initialisation and every pre-search iteration

of propagate, where each status message is ‘subsumed’, ‘at fixpoint’, or ‘not known
to be at fixpoint’, and each raised event is of the form any(α), fix (α), min(α), or
max (α), where α is a decision variable. (Note that you are not asked to provide any
propagators.)

B. If the pre-search propagation has not solved the problem, then draw the entire search
tree (on the second-next page). The propagation choices of sub-question 2.A and the
following branching heuristics are imposed:

• Use the left-to-right variable ordering heuristic (called INT VAR NONE in Gecode).

• Use the bottom-up value ordering heuristic (called INT VAL MIN in Gecode).

Do not expand nodes where all propagators are subsumed. Continue to use the
table on the next page when propagating a branching decision or a constraint.

x
+

y
≤

3
(c

),
y

+
z
≤

4
(d

),
x

<
y

(e
),

y
<

z
(f

)

C
h
os

en
S
ta

tu
s

D
ep

en
d
en

t
N

on
-s

u
b
su

m
ed

F
IF

O
q
u
eu

e
of

p
ro

p
.

R
es

u
lt

in
g

st
or

e
m

es
sa

ge
R

ai
se

d
ev

en
ts

p
ro

p
ag

at
or

s
p
ro

p
ag

at
or

s
n
on

-fi
x
p
oi

n
t

p
ro

p
.s

in
it

.
x
7→

{
},

y
7→

{
},

z
7→

{
}

(n
ot

ap
p
li
ca

b
le

)
(n

ot
ap

p
li
ca

b
le

)
(n

ot
ap

p
li
ca

b
le

)
{

}
[

]
x
7→

{
},

y
7→

{
},

z
7→

{
}

x
7→

{
},

y
7→

{
},

z
7→

{
}

x
7→

{
},

y
7→

{
},

z
7→

{
}

x
7→

{
},

y
7→

{
},

z
7→

{
}

x
7→

{
},

y
7→

{
},

z
7→

{
}

x
7→

{
},

y
7→

{
},

z
7→

{
}

x
7→

{
},

y
7→

{
},

z
7→

{
}

x
7→

{
},

y
7→

{
},

z
7→

{
}

x
7→

{
},

y
7→

{
},

z
7→

{
}

x
7→

{
},

y
7→

{
},

z
7→

{
}

x
7→

{
},

y
7→

{
},

z
7→

{
}

x
7→

{
},

y
7→

{
},

z
7→

{
}

x
7→

{
},

y
7→

{
},

z
7→

{
}

x
7→

{
},

y
7→

{
},

z
7→

{
}

x
7→

{
},

y
7→

{
},

z
7→

{
}

x
7→

{
},

y
7→

{
},

z
7→

{
}

x
7→

{
},

y
7→

{
},

z
7→

{
}

x
7→

{
},

y
7→

{
},

z
7→

{
}

x
7→

{
},

y
7→

{
},

z
7→

{
}

x
7→

{
},

y
7→

{
},

z
7→

{
}

x
7→

{
},

y
7→

{
},

z
7→

{
}

x
7→

{
},

y
7→

{
},

z
7→

{
}

x
7→

{
},

y
7→

{
},

z
7→

{
}

x
7→

{
},

y
7→

{
},

z
7→

{
}

x
7→

{
},

y
7→

{
},

z
7→

{
}

x
7→

{
},

y
7→

{
},

z
7→

{
}

x
7→

{
},

y
7→

{
},

z
7→

{
}

x
7→

{
},

y
7→

{
},

z
7→

{
}

x
7→

{
},

y
7→

{
},

z
7→

{
}

x
7→

{
},

y
7→

{
},

z
7→

{
}

Space reserved for the search tree of sub-question 2.B: Draw each node of the search
tree as a bubble with the current store indicated inside. Continue to use the table on the
previous page when propagating a branching decision or a constraint.

The exam continues on the next page!

Question 3: Modelling (32 points)

Consider the Progressive Party (PP) problem. Given a set G of m guest boats, where guest
boat g ∈ G has crew-size size[g], and given a set H of ` host boats, where host boat h ∈ H has
spare capacity cap[h] (indicating the number of people that can be hosted, other than the crew
of h itself), construct a schedule where the crews of the guest boats party at the host boats over
a given number n of periods such that the following constraints are satisfied:

(party-once-a-period) In each period, the crew of each guest boat parties at some host boat.

(host-at-most-once) The crew of each guest boat parties at a particular host boat in at most
one period.

(meet-at-most-once) The crews of any two distinct guest boats meet (on the same host boat)
in at most one period.

(capacity) The spare capacity of any host boat is not exceeded in any period.

Answer the following sub-questions (on separate sheets of paper):

A. Model the PP problem for any instance. Show how some, if any, of the constraints
named above are automatically enforced by your choice of decision variables. (Hint: Try
to achieve this for at least one named constraint, via a two-dimensional matrix of scalar
decision variables.) Relate each of your constraints to one of the named constraints above,
or declare it to be a channelling constraint. (Hint: Recall that with reification one can
transform disjunction into integer inequality.) (20 points)

B. Identify the variable and value symmetries in your model. Show how some, if any, of the
symmetries of the problem are broken by your model. (4 points)

C. Break as many of the symmetries of your model as reasonable. (4 points)

D. Argue for suitable branching heuristics. (4 points)

First read the modelling instructions on the next page! (They are the same as in the
exam of autumn 2008.)

Modelling Instructions for Question 3

Your model should be clear and comprehensible, say such that your classmates can understand
and implement it without difficulty. Write it in pseudo-code, as on the modelling lecture slides.
The instance data, as well as the decision variables and their domains must be
declared, possibly in mathematical notation, and their meanings must be given.

You may use standard mathematical and logical notations, such as:

• M [i, j] (to designate the element in row i and column j of a matrix M ; you may only
use this notation when each index is a constant, or ? in case you want to extract
an entire slice of the matrix);

•
∑

i∈S e(i) (to designate the sum over all i in the set/enumeration/range S of the numerical
expressions e(i));

• ∀i ∈ S : α(i) (to express that for all i in S, the formula α(i) is true);

• ∧ (and);

• ↔ (is equivalent to; use this for reification or two-way channelling);

• → (implies; use this for one-way channelling).

Try hard to avoid ∨ (or). You may not use ∃i ∈ S : α(i) (to express that there exists an i in S
such that α(i) is true), nor ∃!i ∈ S : α(i) (to express that there exists exactly one i in S such
that α(i) is true), nor negation.

You may only use the following global constraints:

• distinct({x1, . . . , xn}) (also known as allDifferent) enforces that any two decision variables
xi and xj with distinct indices take distinct values, that is ∀i 6= j ∈ {1, . . . , n} : xi 6= xj .

• element(〈a1, . . . , an〉, x, y), where a1, . . . , an, x, y are integers or decision variables, enforces
that y is equal to the xth element of the sequence 〈a1, . . . , an〉, that is ax = y.

• gcc(〈x1, . . . , xn〉, 〈v1, . . . , vm〉, 〈min1, . . . ,minm〉, 〈max 1, . . . ,maxm〉) enforces that the num-
ber of elements in the decision-variable sequence 〈x1, . . . , xn〉 that take the constant value
vj is between the integer constants minj and max j inclusive, for all j ∈ 1, . . . ,m.

• lex (〈x1, . . . , xn〉, 〈y1, . . . , yn〉) enforces that the decision-variable sequence 〈x1, . . . , xn〉 is
lexicographically smaller than or equal to the decision-variable sequence 〈y1, . . . , yn〉.

• linear(〈c1, . . . , cn〉, 〈x1, . . . , xn〉, R, d) enforces that the scalar product of the integer se-
quence 〈c1, . . . , cn〉 with the decision-variable sequence 〈x1, . . . , xn〉 is in relation R with
the integer d, where R ∈ {<,≤,=, 6=,≥, >}, that is (

∑n
i=1 ci · xi) R d.

The exam continues on the next page!

Question 4: Global Constraints (20 points)

Consider the instance below of the Sudoku puzzle, where the task is to fill the cells of the 9× 9
grid with integer values in the range 1, . . . , 9 such that the cells of each row, each column, and
each highlighted 3× 3 block are pairwise different:

6 1 4 5

8 3 5 6

2 1

8 4 7 6

6 3

7 9 1 4

5 u v 2

7 2 6 9 w x

4 5 8 y 7 z

Answer (on this page) the following sub-questions, on the straightforward constraint model
of this problem (seen in the course):

A. Propagate each constraint to value consistency (in order to make the next sub-question
more interesting than it would otherwise be); only indicate the domains in the resulting
store for the decision variables u, v, . . . , z of the bottom-right 3× 3 block: (3 points)

{u 7→ { }, v 7→ { }, w 7→ { }, x 7→ { }, y 7→ { }, z 7→ { }}

B. Continuing from your store of sub-question A, propagate the constraint on the bottom-
right 3× 3 block to domain consistency using Régin’s propagator: (12 points)

Chosen matching: u = , v = , w = , x = , y = , z =

Alternating paths:

Alternating cycles:

Vital edges:

Pruned edges:

{u 7→ { }, v 7→ { }, w 7→ { }, x 7→ { }, y 7→ { }, z 7→ { }}

C. What does Régin’s propagator do if there are more decision variables than values? (2 points)

D. Does Régin’s propagator always compute a fixpoint? Why? (1 point)

E. When can Régin’s propagator signal entailment? Why? (2 points)

