
Assembly Language First Take

Slide 1

Memory

Control
unit

Arithmetic
 logic unit

Accumulator

Output

Input

Key ideas :-

• Programs and data are stored in memory (More on this later).

Slide 2

1. Fetch an instruction from memory.

2. Decode the instruction.

3. Fetch any data from memory

4. Execute the instruction.

5. Work out the address of the next instruction

6. Go back to step 1.

Questions

• How do you represent instructions?

• How do you represent data?

Lecture 2 MIPS Assembly Language, Arithmetic – Justin Pearson Page 3

Our First Instruction :- Add

Slide 3

• Think of assembly language as a very low level programming

language.

• There are very few instructions.

• Many things that you can do in one step in high level languages

you have to do in many steps.

Why learn Assembly Language?

• It is the language of the machine. Computers don’t understand C

or Java directly.

• We’ll see how we can implement assembly language.

• It helps you to understand how compilers work.

Slide 4

• The MIPS processor has 32 special variables called registers.

These registers can hold 32 bits (4 Bytes).

• Some of the registers have special uses. We will find out as we go

along.

• The registers have the names $0-$31, they also have other names.

• In the next few lectures we will be concerned with the following

registers (the meaning of saved and temporary will become clear

later) :

Name Number Usage

$t0-$t7 8-15 Temporaries

$s0-$s7 16-23 Saved

$t8-$t9 24-25 more temporaries

Lecture 2 MIPS Assembly Language, Arithmetic – Justin Pearson Page 5

Small Constants

Slide 5

Pseudo C code

$s0 = $s5 + $t0

Assembly language:

add $s0,$s5,$t0

Arithmetic instructions have three arguments the first two must be

registers and the last is a register or a small constant (more later).

Arithmetic instructions, first argument is the destination.

Slide 6

Important Arithmetic instructions can only have 3 arguments.

Pseudo C code

$s0 = $s1 + $s2 + $s4 + 2*$s5

Assembly language:

add $t0,$s1,$s2

add $t0,$s4,$t0

add $t1,$s5,$s5

add $s0,$t0,$t1

The add instruction does not get confused if the destination register

is the same as a source register.

Lecture 2 MIPS Assembly Language, Arithmetic – Justin Pearson Page 7

A Puzzle

Slide 7

• What about constants?

• How do we do do things like $t0 = $t0 + 1?

We can’t just magic the values into registers we have to load values

in there.

The last operand of an add instruction can be a small constant (a

16bit number). The new form of the instruction is called addi, the

i stands for immediate.

• addi $t0,$t0,1

Slide 8

When you are writing your assembly language programs, a $ means

that there is a register.

While the assembler can often guess what you mean it is better to

write what you mean.

The above instruction could be rewritten as

• addi $8,$8,1

If you wrote

• add 8,8,1

The assembler would have a hard job of guessing what you mean.

Lecture 2 MIPS Assembly Language, Arithmetic – Justin Pearson Page 9

li a pseudo instruction

Slide 9

• How do we put a value in a register?

• The MIPS processor has a special register, number 0, which is

hardwired to be the value 0. No matter what you do to that

register it stays at that value.

• This register is called $0 or $zero .

• How do I set $s0 to be 34?

• add $s0,$zero,34

Slide 10

There is no direct way of loading large constants into a register. It

must be done in two steps.

For example to load the value 0x0fff0123 into the register $s0 we

have to do the following:

• lui $s0,0xfff0 This places the value 0xfff00000 into the

register $s0. lui stands for load upper immediate.

• add $s0,$s0,0x0123

If you are not completely happy with hexadecimal (base 16)

numbers, revise them now!.

Lecture 2 MIPS Assembly Language, Arithmetic – Justin Pearson Page 11

Revision

Slide 11

The assembler provides a number of pseudo instructions, that is

instructions that look like atomic instructions that get turned into a

sequence of instructions.

One of them is li which allows you to load large constants into

registers.

The instructions on the previous slide can be abbreviated to

• li $s0,0xfff00123

Slide 12

• sub and subi same format as add.

• mul multiply.

Lecture 2 MIPS Assembly Language, Arithmetic – Justin Pearson Page 13

Revision

Slide 13

• 32 registers, each can hold 32 bit integers.

• register $0 is fixed at the value 0.

• Arithmetic instructions, very limited format, all ways three

arguments. Destination is the first register.

Lecture 2 MIPS Assembly Language, Arithmetic – Justin Pearson Page 13

