- Memory
- Reading and writing data from memory
- Arrays

• Strings

- The memory of the computer holds both the program and data.
- Slide 2
- We only have 32 registers available, even in small programs you are going to run out of space to store data.
- We can use memory to store data.

3.6		• 1				c	1 /
Memory	18	organised	as	a	sequence	ot	bytes:
1.1011101	10	organioea	~~~	~	ooquon oo	<u> </u>	~,

Address	Value
0	8 bit Value
1	8 bit Value
2	8 bit Value
:	:

Every value in memory has an address, the memory is continuous every element can be accessed in the same way.

- Remember registers hold 32 bits, that is 4 bytes (a word).
- You spend a lot of time reading and writing registers.

This means you often have to think of memory in chunks of 4.

Address	Value
0	32 bit Value
4	32 bit Value
8	32 bit Value
12	32 bit Value
:	÷

Slide 4

lw

• To read information from memory you us the, lw, load word instruction.

Assume s0 holds the address <math display="inline">0x8000000 then

lw \$t0,0(\$s0)

Slide 5 Will load the contents of memory location 0x8000000 into t0 and

lw \$t0,4(\$s0)

will load the contents of memory location $\tt 0x8000004$ into t0.

Format of lw.

Slide 6

The constant can not be a register.

• lw register, constant (register)

How do we load an address into a register? We can you the same trick as in the previous lecture, but there is a pseudo instruction:

• la \$t0,address

There is a reason that you you la rather than li, but I can't tell you what it is yet.

When you start doing your labs you'll start to learn how to use labels.

To store a value from a register into a memory location you use, sw, store word. This instruction has the same format as lw.

la \$s0,0x8000000 li \$t0,10

Slide 8

sw \$t0,0(\$s0)
sw \$t0,4(\$s0)

This puts the value 10 into locations $\tt 0x8000000$ and $\tt 0x8000004.$

•	To access the ith element of an integer array you need to access
	the memory address

Base_Address + 4 * i

You must remember to do this.

	• Sometimes, especially when you are dealing strings you want to read and write bytes.			
Slide 10	• The MIPS processor has two instructions lb and sb which read and write bytes, these have the same format as lw and sw.			

• 1a to load an address into a register. Remember there is a
distinction between the address and the value stored at that and
swaddress. (Pointers and values).
\bullet 1w load a value into a register from memory, sw store a value and
sw from a register to memory.

- Integer arrays, multiply by 4.
- Strings and byte arrays, use 1b and sb.