
There are no types in Assembly Language

Slide 1

• Labels

• Making Decisions beq and bne

• Jumps.

• Some example programs

Slide 2

• Programs and Data live in Memory.

• The processor does not understand strings of characters such as

add for instructions.

• Each instruction has a unique number. For example the in

instruction

lw $4, 0($29)

has the code 0x8fa40000.

• It does not concern us at the moment how instructions get

turned into numbers, all that matters is that it happens. Later it

will become more important how the coding works.

• Every instruction has an address.

Lecture 4 MIPS Assembly Language, Making, Decisions – Justin Pearson Page 3

Labels

Slide 3

• Programs and data are in the same memory. The processor just

fetches numbers from memory executes instructions. Almost

every combination of bits is an instruction. Thus you could ask

the machine to execute a sound file with unpredictable

consequences.

• Also, the machine has no way of knowing if a value in memory is

data or an instruction. So if you do a lw or a sw you better know

what your reading or writing.

• All this has a positive side, you can write programs that write

other programs (Can you think of any?).

Your assembly language programs will fail in very strange ways, you

better get used to understanding the code you write.

Slide 4

• Every instruction has an address.

• Sometimes you need to know the address of an instruction.

• Every instruction takes up exactly 4 bytes of memory (on the

MIPS), it is possible in theory to work out the address of any

instruction if you know the address of the first instruction.

Working out the address of an instruction can be tedious, luckily

there is a program called an assembler which works this out.

Lecture 4 MIPS Assembly Language, Making, Decisions – Justin Pearson Page 5

Making Decisions

Slide 5

.data

n1: .word 10

.text

.globl main

main: la $t0,n1

lw $s0,0($t0)

addi $s0,$s0,1

sw $s0,0($t0)

jr $31

main is the address of the first instruction. n1 is the address of a

piece of data.

Slide 6

All the programs we have looked at so far have been linear. We need

a way of doing different things depending on the values of registers.

The MIPS processor provides two instructions for making decisions:

• beq Branch if Equal

• bne Branch if not equal

General format:

• beq $register1,$register2,Label

Lecture 4 MIPS Assembly Language, Making, Decisions – Justin Pearson Page 7

Example with beq

Slide 7

• beq $register1,$register2,Label If $regisiter1 is equal to

$regisiter2 then goto Label otherwise execute the next

instruction.

• bne $register1,$register2,Label If $regisiter1 is not equal to

$regisiter2 then goto Label otherwise execute the next

instruction.

Slide 8

Pseudo C code:

if $s1 == $s2 then $s3 = 0 ;

Assembly language:

bne $s1,$s2,skip

add $s3,$0,$0

skip: Next Instruction

Lecture 4 MIPS Assembly Language, Making, Decisions – Justin Pearson Page 9

Making Decisions

Slide 9

Pseudo C code:

if $s1 = $s2 then $s3 = 0 else $s3 = $s3 + 1 ;

Assembly code.

beq $s1,$s2,set_zero

addi $s3,$s3,1

j skip2

set_zero: add $s3,$0,$0

skip2: Next Instruction

Slide 10

On the previous slide we met the jump instruction. This is like an

unconditional branch.

• j label make the next instruction the label.

Lecture 4 MIPS Assembly Language, Making, Decisions – Justin Pearson Page 11

Making Loops more efficient

Slide 11

There is often more than one way of writing the same piece of code.

For example:

bne $s1,$s2,skip

add $s3,$0,$0

skip: Next Instruction

Can also be written as:

beq $s1,$s2,settozero

j skip

settozero: add $s3,$0,$0

skip: Next Instruction

Although at this stage apart from the number of instructions there

does not seem to be much difference between the two pieces of code.

We will later discover that for efficiency reasons it is better to avoid

too many jumps.

Slide 12

Pseudo C code

for($t0 = 0; $t0 != 10 ; $t0 = $t0 +1) {

A[$t0] = 0

}

Assume that the base of the integer array A is stored in $s0.

addi $t0,$0,0

loop: addi $t1,$0,10

beq $t0,$t1,exit

add $t2,$t0,$t0

add $t2,$t2,$t2 # $t2 = $t0*4

add $t2,$s0,$t2 # $t2 = address of A[$t0]

sw $0,0($t2)

addi $t0,$t0,1

j loop

exit:

Lecture 4 MIPS Assembly Language, Making, Decisions – Justin Pearson Page 13

Set on Less than

Slide 13

Look at the loop on the previous slide. How can we make it more

efficient?

• We don’t have to load 10 in $t1 each time around the loop

because $t1 does not change (this is called a loop invariant).

• We can do the test to exit the loop at the end of the loop,

because we know the loop executes at least once.

• Instead of multiplying by 4 each time around the loop we can

add 4 to $t0 each time and exit when $t0 is equal to 40.

Exercise rewrite the above code.

Slide 14

• So far we have only compare if registers are equal or different.

• The MIPS provides no branch on less than.

• Instead there is the slt instruction.

General format:

• slt $Rdest,$Rsrc1,$RSrc2

Set Register Rdest to 1 if register Rsrc is less than Rsrc2, set to zero

otherwise.

Lecture 4 MIPS Assembly Language, Making, Decisions – Justin Pearson Page 15

Set on Less than

Slide 15

Pseudo C code:

if $s1 < $s2 then $s3 = 0

Assembly:

slt $t0,$s1,$s2

beq $t0,$zero,skip

add $s3,$zero,$zero

skip:

Lecture 4 MIPS Assembly Language, Making, Decisions – Justin Pearson Page 15

