
jal and jr

Slide 1

• Functions and register conventions.

• Stacks

• Implementing Stacks on the MIPS

Slide 2

• As in high level languages , when programming in assembly

language you should split up your program into smaller

functions, that you can reuse.

• One of the key ideas with functions is that you can call them

from any where and return back to where you called the function

from.

• The MIPS processor has two instructions that enable you to call

functions, jr and jal.

Lecture 5 MIPS Assembly Language, – Justin Pearson Page 3

Passing Values to functions

Slide 3

• Jump and link.

jal label

Copies the address of the next instruction into the register $ra

(register 31) and then jumps to the address label.

• jr $register jumps to the address in $register most common

use

jr $ra

Slide 4

.data

str: .asciiz "Hello mum!.\n"

.text

.globl main #necessary for the assembler

main: jal message

jal message

li $v0,10

syscall #exit the program gracefully

message: la $a0,str

li $v0,4

syscall #Magic to printhings on the screen.

jr $ra

Lecture 5 MIPS Assembly Language, – Justin Pearson Page 5

Temporary and Saved Registers

Slide 5

• There are many way of passing values to functions, but there is a

convention that most programs on the MIPS follow.

• $a0-$a3 (registers 4 to 7) arguments 1-4 of a function.

• $v0-$v1 (registers 2 and 3) results of a function.

Slide 6

li $a0,10

li $a1,21

li $a3,31

jal silly #Now the result of the function is is $v0.

li $v0,10

syscall

silly: add $t0,$a0,$a1

sub $v0,$a3,$t0

jr $ra

Lecture 5 MIPS Assembly Language, – Justin Pearson Page 7

What happens?

Slide 7

• On the previous slide in our function we needed an extra register

to do part of a calculation.

• How do we know what registers to use?

As with function calls there is a convention.

• $s0-$s7 the saved registers, these registers should be unchanged

after a function call.

• $t0-$t9 these are temporaries, are are not necessarily preserved

across function calls.

So in the previous example it would of been a bad thing to use $s0 in

the function silly.

Slide 8

• What happens if we run out of registers? What happens if we

have to use $s0?

• We would have to save it.

• But where?

Soon we will find a good place to store things.

Lecture 5 MIPS Assembly Language, – Justin Pearson Page 9

Implementing a stack on the MIPS

Slide 9

jal silly

.

.

.

silly: jal silly2

.

.

.

jr $ra

So we have to save $ra as well.

Slide 10

• A stack is a data structure, at least two operations:

– push put a value on the top of the stack

– pop remove an item from the top of the stack.

• The important thing about a stack is that it is a LIFO (Last in

First Out) data structure. This is useful for nested functions.

• You store your temporary data by pushing it onto the stack and

restore things by popping things from it.

Lecture 5 MIPS Assembly Language, – Justin Pearson Page 11

Implementing a stack on the MIPS

Slide 11

• The MIPS has no specialised push and pop instructions (Other

processors do).

• Instead the stack is implemented using the register $sp (number

29), lw and sw.

Slide 12

• Unless you are writing an operating system the register $sp

points to the top of the stack.

• On the MIPS stacks grow downwards.

• You have to manipulate the value of the register $sp and then

use store and load.

Lecture 5 MIPS Assembly Language, – Justin Pearson Page 13

Optimising push and pop

Slide 13

To push the contents of register $s0 onto the stack. Do the following:

addi $sp,$sp,-4

sw $s0,0($sp)

To pop the stop of the stack into register $s0 do the following:

lw $s0,0($sp)

add $sp,$sp,4

Basic rules:

• Every thing you push onto the stack, you must pop from the

stack.

• Never touch anything on the stack that does not belong to you.

Slide 14

silly: addi $sp,$sp,-4

sw $ra,0($sp)

jal silly2

lw $ra,0($sp)

add $sp,$sp,4

jr $ra

Lecture 5 MIPS Assembly Language, – Justin Pearson Page 15

Example, the factorial of a number

Slide 15

How can we make the following code more efficient?

silly: addi $sp,$sp,-4

sw $s0,0($sp)

addi $sp,$sp,-4

sw $ra,0($sp)

jal silly2

lw $ra,0($sp)

addi $sp,$sp,4

lw $s0,0($sp)

addi $sp,$sp,4

jr $ra

We have obeyed all the rules, but we are wasting some instructions.

We don’t need to add or subtract four twice, we could just add or

subtract 8 and then change the loads and stores.

Slide 16

silly: addi $sp,$sp,-8

sw $s0,4($sp)

sw $ra,0($sp)

jal silly2

lw $ra,0($sp)

lw $s0,4($sp)

addi $sp,$sp,8

jr $ra

General rule (applies to all programs you’ll every write):

• Write the inefficient version once that is correct optimise.

Lecture 5 MIPS Assembly Language, – Justin Pearson Page 17

fact(n) = n ∗ fact(n − 1)

Slide 17

result: .space 4 #the place for the result

.text

.globl main

main: addi $sp,$sp,-4 #save the return address.

lw $a0, 5

jal fact

la $t0,result

sw $v0, 0($t0)

lw $ra,0($sp)

addi $sp,$sp,4

jr $ra

Slide 18

fact: addi $sp,$sp,-4

sw $ra,0($sp) #push $ra on the stack

#fact of 0 is 1

bne $a0,$zero,not_zero

#Set $v0 to be 1

addi $v0,$zero,1

#Restore $ra from the stack

lw $ra,0($sp) #Read $ra from the stack

addi $sp,$sp,4 #restore the stack pointer.

jr $ra

Lecture 5 MIPS Assembly Language, – Justin Pearson Page 19

fact(n) = n ∗ fact(n − 1)

Slide 19

not_zero:

addi $sp,$sp,-4

sw $a0,0($sp) #push n on the stack ($a0=n)

addi $a0,$a0,-1

#So call fact with our new parameter

jal fact # $v0=fact(n-1)

lw $t0,0($sp) #restore n from the stack.

addi $sp,$sp,4

mul $v0,$v0,$t0 #$v0 = fact(n-1) ($v0) * n ($t0)

#Restore the stack for $ra

lw $ra,0($sp)

addi $sp,$sp,4

jr $ra

Lecture 5 MIPS Assembly Language, – Justin Pearson Page 19

