Lab 2 – Multiprocessors

Andreas Sandberg <andreas.sandberg@it.uu.se>

1 Introduction

The purpose of this lab is to illustrate the need for synchronization and the effects of consistency in multiprocessors. Unlike lab 1 this lab will not require access to Uppmax.

In this lab we will make extensive use of the POSIX threads (pthreads) API, which is the standard threading API on Unix systems. I suggest that you check out the tutorial at [Lawrence Livermore National Laboratory](https://computing.llnl.gov/tutorials/pthreads/) if you have no prior experience with pthreads programming. Another excellent resource is the [Single Unix Specification](http://www.unix.org/single_unix_specification/) which contains the documentation for all standard Unix APIs.

2 Critical sections using Dekker’s algorithm

2.1 What are critical sections, and who is this Dekker guy?

When writing parallel applications you usually need to update some shared state. You normally want to ensure that updates to shared state occur without interference from other threads. There are several methods to accomplish this. One way is to use atomic instructions, these can be used to increment counters, implement locks, etc. Another way is to use critical sections where only one thread can execute at any given time.

Several algorithms have been developed to solve the critical section problem, we will use one called Dekker’s algorithm. Dekker’s algorithm was attributed to the Dutch mathematician Theodorus J. Dekker in a manuscript from 1965 by Edsger W. Dijkstra. See [Algorithm](https://computing.llnl.gov/tutorials/pthreads/) for a pseudo-code description of the algorithm.

2.2 The lab

All the files related to this part of the lab should reside in `/it/kurs/dark2/ht09/dekker`. Copy them to a suitable working directory in your home directory. The provided skeleton code consists of a handful files described below.

Makefile Automates the compilation. You can simply type `make` to compile both the pthreads version and the version using your own synchronization primitives.

main.c Common code for both versions of the application. You’ll need to edit this file to insert calls to the synchronization code.

pthread.c Reference implementation of the synchronization code. You don’t need to edit this file.

[1](https://computing.llnl.gov/tutorials/pthreads/)
[2](http://www.unix.org/single_unix_specification/)
Algorithm 1 Code for thread i to run a critical section, thread j is the second thread that competes for the critical section. The $turn$ variable should be initialized to 0 and both $flag$ variables should be initialized to $False$ prior to executing the algorithm.

\[
\begin{align*}
flag_i & \leftarrow True \\
while \ flag_j & do \\
\text{if} & \ turn \neq i \text{ then} \\
& \ flag_i \leftarrow False \\
\text{while} & \ turn \neq i \text{ do} \\
& \text{Do nothing or sleep} \\
end \ while \\
& flag_i \leftarrow True \\
end \ if \\
end \ while \\
\end{align*}
\]

Do critical work

\[
\begin{align*}
turn & \leftarrow j \\
flag_i & \leftarrow False
\end{align*}
\]

dekker.c Implement Dekker’s algorithm here.

You don’t have to modify the Makefile, but it might be useful to have a look inside. The file contains rules to build the two binaries dekker and pthreads, the latter uses pthreads for synchronization instead of Dekker’s algorithm. The idea is that you should be able to test whether your critical section works by using pthreads and then use dekker to test that your implementation of Dekker’s algorithm works.

You compile the application by executing the make command in the source directory. There are targets in the Makefile, e.g. the clean target. To execute the clean target, which cleans up the working directory, you simply run make clean.

When you execute dekker (or dekker_test), two threads are spawned. One thread increments a counter and another thread decrements the counter. Since both threads operate on the same counter the same number of times, the expected value after both threads terminate is the original value of the counter (0).

2.3 Tasks

1. Compile and execute the pthreads binary. Does the counter return to its initial value? Why? Why not?

2. Insert calls to enter_critical and exit_critical to enter and exit critical sections to allow for correct parallel execution of the application. Use the pthreads version to test this. Does the counter return to the initial value now?

3. Implement Dekker’s algorithm for synchronization.

 (a) Why do the flag and turn variables have to be volatile?

 (b) Why doesn’t the straightforward implementation work?

4. Add suitable memory barriers to the code to make the synchronization work correctly. Use the MFENCE macro.

3 Improving the performance of the Gauss-Seidel algorithm

3.1 Introduction

The Gauss-Seidel algorithm is an iterative equation solver that is used to solve linear equation systems. We’ll be solving the Laplace equation:

\[\Delta u = 0 \text{ in } \Omega \]
\[u = 0 \text{ on } \partial \Omega \]

You may have noticed that Equation 1 is really a partial differential equation, it is possible to discretize such an equation and solve it as a linear equation system. See section 3.1.1 if you are interested, otherwise, skip to section 3.1.2.

3.1.1 Mathematical background

We discretizing the problem using a homogeneous grid with the spacing \(h \). Using central differences we can approximate the \(\Delta u \) as:

\[\Delta u_{i,j} \approx \frac{u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1} - 4u_{i,j}}{h^2} \]

The discretized problem is thus:

\[u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1} - 4u_{i,j} = 0 \]

It is possible (consult your linear algebra textbook) to write the above equation on the form:

\[Ax = b \]

The system can then be solved as a linear equation system using an iterative method, such as Gauss-Seidel. Let \(x^k \) be the value of element \(i \) in the vector \(x \) after iteration \(k \). A general description of a sweep in a Gauss-Seidel solver would look as follows:

\[x_{i}^{k+1} = b_i - \sum_{j<i} a_{ij} x_j^k - \sum_{j>i} a_{ij} x_j^k \]

In our case with the discretized Laplace equation (Equation 4), we get:

\[u_{i,j}^{k+1} = \frac{u_{i-1,j}^{k+1} + u_{i+1,j}^{k+1} + u_{i,j-1}^{k+1} + u_{i,j+1}^{k+1}}{4} \]

We continue to iterate [Equation 7] until the solution has converged, i.e. the difference between the approximate answer and the real answer is small. We will use the following condition, where \(t \) is the tolerance, to test for convergence:

\[\sum_i \sum_j |u_{i,j}^k - u_{i,j}^{k+1}| \leq t \]

What [Equation 8] really means is that the algorithm has converged when the difference in the results from two consecutive iterations is small.
Algorithm 2 Gauss-Seidel solver for the Laplace equation on an \(n \times m \) matrix, with the tolerance \(t \).

\begin{algorithm}
\textbf{Require:} \(n, m \geq 2 \)
\textbf{repeat}
\textbf{for} \(i = 1 \) to \(n - 1 \) \textbf{do}
\textbf{for} \(j = 1 \) to \(m - 1 \) \textbf{do}
\(v \leftarrow \frac{u_{i-1,j} + u_{i,j-1} + u_{i+1,j} + u_{i,j+1}}{4} \)
\(e \leftarrow e + \left| u_{i,j} - v \right| \)
\(u_{i,j} \leftarrow v \)
\textbf{end for}
\textbf{end for}
\textbf{until} \(e \leq t \)
\end{algorithm}

Fig. 1: Access pattern for the sequential version of the Gauss-Seidel algorithm. The dark dots represent matrix elements that have been updated during the current iteration and the bright dots represent “old” values.

3.1.2 Implementation

The neat thing about Gauss-Seidel is that it allows us to update the matrix representing the solution in-place, unlike some other methods where the old version of the solution must be kept in temporary storage. Algorithm 2 is a pseudo code implementation of the sweep in Equation 7.

The sequential sweep of Algorithm 2 starts in the top left corner of the matrix, and iterate over each row, one element at a time, one row at a time, see Fig. 1. We choose this order to improve spatial locality since C stores matrices in row-major order.

To improve performance, we can set up several threads working in parallel on different (vertical) chunks of the matrix. When a thread arrives at the right end (assuming that we sweep from left to right) of its chunk, it moves to the first element on the next line and waits until the thread to the left has computed its last value for that row before it continues, see Fig. 2. In order to achieve this we have to include some kind of synchronization between the threads. There are a couple of different strategies to solve this, either you use a flag array with one flag per row and thread, or you use a progress counter for each thread. To simplify things, you may (should) have a barrier at the end of each iteration.

3.2 What is provided?

You get the complete source code for the sequential version, but only a skeleton for the parallel version. The files reside in the folder /it/kurs/dark2/ht09/gs.
source code for the parallel version contains comments (pay particular interest to the TASK: comments) to guide you towards what functionality should be implemented. Note that the comments really only applies to one particular way of solving the problem, you may of course solve the parallelization in a different way.

We have split the project into several source files to make the project structure cleaner and prepared a Makefile. In the source directory, you will find the following files:

- **Makefile** Controls the compilation using the make tool. You can simply type make gs_pth to compile the pthreads version, or make gs_seq for the sequential version. There is also a test target that you should use to verify your solution, you may run it with make test.

- **gs_common.c** Contains the common functions, like command line argument handling, initialization etc. Mostly boring stuff you don’t need to bother yourselves about, most of the interesting stuff resides in separate implementation files.

- **gs_interface.h** Contains declarations and documentation for the interface between gs_common.c and the GS implementations.

- **gsi_seq.c** Contains the implementation of the gsi_calculate function for the sequential GS sweeps.

- **gsi_pth.c** Will contain your version of the parallel gsi_calculate function.

- **solution.c** Don’t peek\(^3\)

The code compiles as-is, but the parallel version doesn’t do any computations nor does it contain any synchronization. You can set the debug mode by defining the macro DEBUG to 1 at the top of the file.

The default matrix size is 2048x2048, so that the matrix (filled with double elements, i.e. 32MB of data) doesn’t fit in the cache. We start 4 threads by default. Inputs must be a power of 2.

3.3 Tasks

Edit the gsi_pth.c file and implement the gsi_calculate function using the pthreads library. The comments should give you some hints. Implement the synchronization using a progress counter (or flags) and then the iteration barrier.

\(^3\)Not built by the Makefile, but can be built with gcc -o solution ./solution.c.
Check that your results are correct by using the `make test` command. Running the `test` target of the `Makefile` will execute both the sequential and the parallel version of the program and compare the output.

1. Implement the synchronization between threads working on the same row in the matrix.

2. Implement the barrier at the end of the iteration.

 (a) Extra: Think of a solution without the barrier (a little more efficient), and propose it to me (you don’t need to implement it).

3. Demonstrate your working solution implementation of the parallel Gauss-Seidel algorithm (i.e. same outputs for `gs_seq` and `gs_pth`, but faster!).

4. The current parallel implementation is really slow, this is due to how the local reduction variable for the error is stored. There is a simple thing that you can do to improve this, you should have heard about this in the lectures. What kind of miss is involved? Modify the `thread_info_t` data structure to improve the performance.

3.3.1 Bonus

1. Is the performance gain linear with the number of processors/threads? Why/Why not? (Elaborate your answer)

2. What kind of memory model do we rely on, here? (i.e. What is the memory model of the machine of the lab and what does it guarantees does it provide?)

3. Suppose we decide to implement the solution differently. We want to use a thread pool, where each thread sits waiting for a task to be assigned. We implement the solution as follows: As soon as a thread finishes with its current task (i.e. computations for a row), it is assigned another line (maybe from another chunk). How would this affect performance? What is the name of the miss that is introduced?

4You may use a pthread barrier, see the documentation for `pthread_barrier_init`.