
Students’ Alternative Standards for Correctness
 Yifat Ben-David Kolikant

The Hebrew University of
Jerusalem

Mount Scopus, Jerusalem
Israel, 91905
972-588-2056

yifatbdk@mscc.huji.ac.il

ABSTRACT
We examined students’ definition of correctness as reflected by
their decisions whether certain programs are correct. Using a
questionnaire we found that students understand correctness as a
relative property of the program and therefore might decide that a
program is correct even when they evidence its incorrect behavior.
We also found that students’ definitions of systematic testing are
inherently different from that of professionals, yet are consistent
with their tolerance to errors.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]

General Terms
Human Factors, Verification.

Keywords
Correctness, conceptions, norms, practices.

1. INTRODUCTION
In this work we examine the students’ standards for correctness as
well as systematic testing. Our hypothesis is that students have
different standards for good quality programs as well as for good
work methods that are naturally correlated. This hypothesis is
based on results from previous work where we investigated the
classroom norms regarding algorithmic problems [2]. We found
that computer science (CS) instructors deal with students whose
experience in technology (mostly as users) influence their
epistemology, learning trajectories, and hence their performances
as programmers.

Specifically, students have different computer-science norms that
govern their programming activities. For example, they are
tolerant to errors, which are perceived as unavoidable part of the
programming reality. Furthermore, thorough testing translates to
execute your program for many non-systematically chosen input
examples and hope for luck.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ICER’05, October 1–2, 2005, Seattle, Washington, USA.
Copyright 2005 ACM 1-59593-043-4/05/0010...$5.00.

Students’ satisfaction with incorrect programs implies that they
understand correctness in a different way than professionals.
Professionals’ definition for correctness is dichotomous, that is
given a program and its goals if the program fulfills its goals for
every legal input than it is correct (and of course it is incorrect
otherwise). In contrast, we believed that students’ understand
correctness as relative. From that viewpoint, programs with
incorrect I/O behavior can be relatively correct. Moreover, being
tolerant to errors, these relatively correct programs might be
considered as correct.

In order to examine our hypothesis we composed a questionnaire
to which students at both high-school and college level
responded. The questionnaire consisted of two parts. In part A, we
inquired about work habits regarding testing and perceptions on
these work habits. In part B, we described three incorrect
programs and asked the students to decide whether these
programs were correct, incorrect, and relatively correct.

Most students demonstrated confusion regarding correctness.
Furthermore, they ascribe to correctness as a relative feature of
programs. Moreover, in general relatively correct programs were
also considered as correct in contrast to professionals whose
conceptualization of correctness is dichotomist. The students’
alternative conceptions on correctness settle well with their
inadequate work habits regarding testing, their tolerance to errors,
and their (faulty) belief that their testing is indeed systematic

2. BACKGROUND
2.1 The Professional Definition of Correctness
Joni and Soloway [7] bring the following definition for working
programs: “a program is a working program if it exhibits correct
I/O behavior for all input in the domain of the problems space.”
(p. 96) Yet, these programs might suffer from poor quality, that is,
inefficient, illegible, non-modular, and not documented. Fleury
[5] found that experts' goals when debugging is to "get the
programs to work on all conceivable sets of data that a user might
provide (p. 367)." Figure 1 summarizes the academic definition of
correct programs.

Figure 1: The professional definition of correctness

Program of a good quality = working program AND
elegant program
Working program = exhibits correct I/O behavior for all
legal input
Elegant program = efficient, legible, documented, and
modular

37

The professional definition is settled with the rigorous methods
for correctness verification used by professionals. Work done both
in the academia and the industry is guided by long-term goals of
research and design and therefore becoming professionals
involves adopting norms of rigor as well as the ability and the
propensity to invest efforts in tasks beyond making the program to
work, such as careful testing of their products, analysis of errors,
design of solutions, consideration of efficiency, and
documentation.

2.2 Students’ Values of and Methods for
Testing
Students’ inadequate work habits have been described by many
researchers. For example, Edwards [4] complains that
introductory computer science students rely on a trial and error
approach for too long to fix errors. Furthermore, they tend to
demonstrate careless attitude toward the quality of their programs.
They conclude on correctness from executing a program merely
once or twice, solely observing that the output shows no
straightforward irregularity, or even worse, by compiling the
program successfully. Furthermore, when an error is shown in the
output, students merely try to switch around a few things in order
to make it work, and finally, some students’ work is oriented
solely toward the goal of making the program give the correct
answers to the instructor’s input example.
In addition, Leventhal et al.[8] found that software testers exhibit
positive test bias, that is, they have the tendency to test a
hypothesis with data which is consistent with the hypothesis,
rather than testing with data which is inconsistent with the
hypothesis. However, advanced programmers performed better
than beginners.

Inadequate work habits for testing and verification were also
found by Iftikhar [6]. Moreover, Iftikhar found that students
believed that these methods were systematic. Similarly Scott et al
[10] found that university students (a) did not test their systems
using the same tests as industry does, (b) the majority of students
did not have the level of understanding required, and (c) students
do not place the same value on software testing as industry does,
and therefore, they are unlikely to test their systems with the same
rigor that industry does. Finally, while students may have felt that
their skills were aligned with industry, industry thought that their
understanding was inferior.
Fleury [5] found that (college) students' viewpoint on
programming is different than that of experts. Students' tend to
avoid complexity, whereas experts, who have realized that
avoidance of complexity is impractical, appreciate programs in
which complexity is manageable. Consequently, students'
definition of easy programs (to read, to modify, and so forth) are
different than that of experts. Consequently, she recommended
that instructors should be aware of students' tendencies, should
provide specifics when demanding "easy-to-read" or "easy-to-
modify" programs, and should provide learning opportunities for
students that will lead the students to realize that avoiding
complexity is impossible.

In previous work we explored classroom CS-norms [2]. We asked
students to develop a program that calculates the numbers of $20
and $50 bills an ATM should give for a given amount. Most
students were not able to solve the problem correctly. Most of them
implemented an algorithm that divided the amount by 50 to

calculate the number of $50 bills required, and then divided what
was left by 20 to determine how many $20 bills were required;
these algorithms did not handle correctly cases such as 80 and 160
because that would result with a reminder of 10 or 30.
Yet, most of the students considered their programs to be “mostly
correct.” They defended their approach by explaining that errorful
programs are simply unavoidable. The following quotes are taken
from that conversation.
Student: If you work very thoroughly, you will try more examples
to check your program and see if it works.
Teacher: Can you be sure that the program is correct?
Students: The chances to succeed are higher this way.
Next, we explored CS teachers’ conceptions of their students’ work
habits and performance in comparison to their educational goals.
The teachers reported that while students accumulate factual
knowledge, such as programming structures, they resist any attempt
to change their work habits even though those habits lead them to
poor performances [3].
Furthermore, not even when faced by situations where
incorrectness was evident and work methods applied were useful,
were the students convinced to abandon their methods. Instead they
blamed anyone and anything else. The last complaint is consistent
with the findings of Edwards [4]. This phenomenon was also
observed by McCracken et al [9] who found that students who
failed to develop a program blamed the conditions of the lab when
in fact they never thought of the data structure needed to solve the
problem.
Specifically, teachers complained that students sometimes are
satisfied with success of compilation and that when testing involves
a calculation to verify that the output displayed is indeed what
should be, students do not perform the calculation, but rather, they
merely check that the output seems reasonable. This behavior is
consistent with the results of Edwards [4].
The quotes below exemplify these phenomena. The situation from
which they were taken is a laboratory session in a course in
concurrency for high-school level. The students were asked to
develop a certain program (for further details, [1]).
Student: It [program] works. It prints some garbage at the top of
the screen but that isn't important.
Teacher: [goes to student's computer] Show me.
Student: [executes the program and enters input; points to the
screen] Here, it works.
Teacher: Is it the output you were expecting?
Student: I don't know.

2.3 The Notion of Relative Correctness
Note that the students quoted above did not care about the
“garbage” displayed in addition to the output he expected. Also
note that the students who produced incorrect programs for the
ATM problem ascribe to these problems as mostly correct. These
performances raised the hypothesis that students’ understanding
of correctness is different than the dichotomous definition
professional posses.

38

In fact, we encountered situations where students decided a
program is correct even though the program clearly did not fulfill
its requirements. For example, we gave 138 high-school students
who studied concurrency a synchronization problem that had two
synchronization goals: (SG1) that three operations will be
executed in a certain order and (SG2) that there will be no
unnecessary other constraints. We provided the students with one
correct solution and four incorrect solutions. The first two
incorrect solutions did not fulfill SG1 and the second two fulfilled
SG1 but did not fulfill SG2. Most students recognized that the
first two solutions were incorrect, yet nearly a half of the students
claimed that the two last solutions were correct although most of
them clearly noticed that SG2 is not fulfilled. They claimed that
SG2 was a nice-to-have feature yet not a crucial demand.

From other unreported observations we noticed that mostly,
students were confused when a program produced the expected
output but also unexpected output although they were familiar
with the formal definition of a correct program. We concluded
that students have different stable standards as to what constitute
correctness (for further details, [1]).

3. METHODOLOGY
3.1 Research Tool
We distributed a questionnaire among 24 high-school students
and 16 college students when they finished their CS studies. The
responses were anonymous and individual.

The questionnaire consisted of two parts. Part A was designed to
gain information on students’ practices, norms, and perceptions
regarding testing and verification. It consisted of the following
five statements, each of which associated with evidence found in
previous works. The students were instructed to mark one of the
following options for each statement: (0) I disagree, (1) I agree,
and (2) otherwise. There was room left for comments:

A.1 I executed a program I had written many times and got
valid output, therefore I know that my program is
correct

A.2 I wrote a program that computes a complicated
calculation. When I test the program, I sometimes do
not calculate (manually) the expected output, but
rather satisfied if the output displayed looks
reasonable

A.3 There are cases that I am sure that a program I wrote is
correct and then I am satisfied with compiling it (with
no executions)

A.4 When I test a program I systematically verify that I
checked all the possible input examples

A.5 There is always the possibility that there is an input
example for which the program does not work that I
did not find

Statements A.1, A.2, and A.3 describe verification methods that
we observed in classes and are considered to be inadequate by
professionals. Statement A.4 measures the conceptions of students
on their methods as being systematic, specifically, that all the
legal input is covered; whereas statement A.5 measures whether
their methods are actually systematic.

Part B was designed to gain information about students’ standards
of correctness, in particular to examine whether previous evidence
on perceiving correctness as relative apply here too. We gave
three assignments. In each assignment we described an incorrect
program and an output displayed from which one can know that
the program is incorrect. In all the assignments, the mistake was
that unexpected output was displayed in addition to expected
output. These assignments were based on situations we
encountered in our observations. For each program we gave three
statements, to each of which the students had to mark if they
agree, disagree, or otherwise, and we gave room for comments.

The statements were as follows, (a) the program is correct, (b) the
program is incorrect, and (c) the program is correct if the output
does not distract from getting the required information (for
assignment 1 we used a different version: the program is correct
for most cases).

In assignment 1 the students were given a simple if-then program
code whose goal was to display output according to the value of
input X. The program was incorrect because for one group of
inputs it produced the expected value, yet in addition it produced
one more unexpected output. The students were also given testing
results of input examples taken from this group and other groups.

Assignment 2 was phrased as follows:

You developed a very complicated program that should display
hundreds of outputs. The program displayed all the output you
expected to get but also in the end displayed one output item that
does not suit the program requirements.

Finally, assignment 3 was as follows:

You developed a program that produces information about your
family at your request. When you gave your family data and asked
for the names of all your cousins, the program displayed the
names of all your cousins but in addition, in the end you got the
name of one of your uncles.

3.2 Data analysis
We first read the explanations of students who checked the
“otherwise.” If the explanation revealed a clear tendency toward
agreement or disagreement we changed the response code
accordingly. That way we had under “otherwise” only students
who could not decide whether they agree or disagree.

3.2.1 Part A
For every statement we calculated the percentage of students who
agreed with it and checked its statistical significance. We also
calculated the distribution of students who value their testing as
systematic and at the same time reported on non-systematical
methods.

3.2.2 Part B
All programs given were incorrect. Therefore ideally all students
should have disagreed with the statements ‘the program is correct’
and agreed that the program is incorrect. In addition, since there is
no such concept “relatively correct” in the curriculum students
should have disagreed with this statement. Therefore this response
is ranked 1.

The next best response (rank 2) was given to students who
understood that the program is incorrect, yet also agreed that it is

39

relatively correct. The worst responses would be of students who
agreed the program was incorrect. We distinguished between
responses where students also agreed that the program is relatively
correct and those where students disagreed on that. Yet, we
ranked both these responses 3. Finally, the rank 4 was given to
indecisive responses, that is, responses where “otherwise,” was
checked, as well as responses in which students either agreed or
disagreed that a program was both correct and incorrect. The
ranks are summarized in the left column of Table 2.

We calculated the distribution of the responses for each group
(college and high-school) and conducted statistical analysis to
examine whether these groups are significantly different. In
addition, we conducted correlation analysis among the statements
of each assignment.

4. FINDINGS

4.1 Part A: Work Habits and Conceptions
Table 1 present the students’ responses to part A. Each row
presents the percentage of students who agreed with one
statement. The two leftmost columns indicate the statement, the
next column indicates the percentage of agreement among high-
school students, the fourth is for the college students, and the
rightmost column presents the percentage of agreement among the
entire sample population.

Table 1: Percentage of students who agreed with statements of

Part A

Statement High school
N= 25

College
N = 15

Total
N= 40

A.1 many
executions 50% 50% 50%

A.2 reasonable
output 33% 69% 48%

A.3 Solely
compiling 42% 31% 37%

A.4 systematic
verification 71% 75% 72%

A.5 Errors are
possible 54% 81% 65%

Fifty percent of both groups agreed with statement A.1, that they
can conclude correctness from merely executions on many input
examples. While we would have expected them to at least
comment on the need for systematic choice of the examples, the
few comments we got from those who disagreed with that
statement reveal that the disagreement is rooted with the use of
the word ‘many,’ or in one of the students’ words: “not many
[input examples], one or two examples work for me,” while we
would have expected the students to stress that many examples yet
not systematically chosen (to represent the entire input) does not
make a sufficient method.
Similarly, a non-negligible number of students (42% of high
school students and 31% of college students) reported that they
are sometimes satisfied with mere compilation and that they
sometimes do not verify that the displayed output is indeed
correct but rather are satisfied if it looks reasonable (33% of the
high school students and 69% of college students).

Interestingly, many students in both groups believe that they are
systematic concerning correctness verification. The responses to
this statement were found to be statistically significant (r=.05,
p<0.05). Nonetheless, a distinguishable number of these students
also agreed on performing the verification methods educators and
CS professionals consider as inadequate as displayed in Table 2.

Table 2: Percentage of “systematic” students’ (who agreed
with Statement A.4) agreement with statements of Part A

Statement Percentage of students who agreed

 High School
N=18

College
 N= 11

Total N=29

A.1 many
executions

44% 36% 41%

A.2 reasonable
output

22% 36% 28%

A.3 Solely
compiling

33% 27% 31%

A.5 Errors are
possible

44% 45% 45%

Note that both the high school and the college groups have a
significant number of “systematic” students who agreed that they
apply inadequate methods for testing (statement A.2 and A3.) In
addition, the fact that 41% of these “systematic” students
conclude correctness when they get expected output behavior for
many input examples implies that students have a different
conception of the meaning of being systematic where quantity
covers for analysis. This hypothesis is strengthened by the fact
that 45% of the “systematic” students agreed that there is always a
possibility that the program does not produce correct output for
the entire input domain. We concluded that students ascribe to
their non-systematic methods as systematic.

4.2 Part B: the Definition of Correctness
The distribution of students’ response to the three assignments in
part B is presented in Table 3. The responses of the two groups in
comparing proportion differences were found to be significantly
different. Specifically, we checked the difference in proportion
hypotheses analysis p1-p2 between the high-school group (n=24)
and the college group (n= 16) for every statement in part B. We
found that excluding two statements (statement c in assignment 1
and statement a in assignment 2) the difference in answers
proportion between the groups is statistically significant
(alpha≤.01). Therefore, we present the results of each group
separately.
 Each row presents the frequency of a specific response among
each of the groups. The responses rank is presented in the left
column (a detailed explanation about the different ranks is
provided in section 3.2.2). The second column presents the
response to the three statements that comprise an assignment
according to the following order from left to right: the program is
correct, the program is incorrect, and the statement on relatively
correctness. We coded the responses as follows: students’
agreement to statement is marked by “√,” and disagreement is
marked by “X.” The third column and the fourth column present
the percentage of students who gave this response in the high-
school group and the college group respectively.

40

4.2.1 Misjudgment of correctness
The distribution of the responses (Table 3) is characterized by
different performances between the two groups as well as different
responses to each assignment in each group. This fact is
prominent given the fact that all the programs given were
incorrect and the incorrect output behavior had the shared
characteristic of extra output.
Interestingly, the portion of high school students who responded
correctly (rank 1) was greater than that of the college group for all
the assignments: 38% vs 31% in assignment 1, 58% vs 19% in
assignment 2, and 83% vs 44% in assignment 3. However, in both
groups there was a distinguishable portion of students who failed
to recognize that the program was incorrect.
First, in assignment 1, none of the high school students agreed
that the program is correct; in contrast, 25% of the college
students thought that the program is correct (rank 3) and 19%
were indecisive, that is, 41% of the college students could not tell
the program was incorrect, even though they were given the fairly
simple program code, the exact program goals, and the input
example that reflects the incorrect I/O behavior.
Additionally, in responding to assignment 2, 13% of the high
school students decided the program described was correct (and
16% more were not certain. Even worse, 38% of the college
students decided that the program was correct and 30% more were
indecisive.

Finally, in responding to assignment 3, 83% of the high-school
students gave the correct response (rank 1), 12% decided the
program was correct, and only 5% were indecisive. In the college
group 26% decided the program was correct and 24% were
indecisive. Thus, the responses of both groups to assignment 3
were better than the responses to assignment 2 despite the fact that
the I/O incorrect behavior was rather similar: after a display of a
sequence of correct output one “extra” incorrect output was
displayed. The only difference in the assignments was the ‘cover
story’ for the programs. In assignments 2 the goal was abstract
whereas in assignment 3 the program processed the data of the
students’ family. This implies that there are subjective factors that
influence students’ tolerance to incorrect I/O, namely to their
standards of correctness.

4.2.2 The notion of relative correctness
The correlations between the agreement responses to statements
regarding relative correctness and agreements that the program
was correct or incorrect were as follows: In the high-school group
there was no significant correlation among the responses to
assignment 1. In assignment 2 and assignment 3 there was a
strong positive correlation between those who agreed that the
program is relatively correct and those who agreed that the
program is correct (0.518 in assignment 2 and 0.676 in
assignment3) as well as a strong negative correlation between
agreement to the statements of relative correctness and agreement
to the statement that the program was incorrect (-0.715 in
assignment 2 and -0.676 in assignment 3).

Table 3: The students’ responses to the assignments in part B

In the college group we found that in assignment 1 there was a
strong positive correlation (0.505) between students who agreed
the program is relatively correct and students who agreed the
program is correct, yet there was no significant correlation
between the responses to the relative correctness and
incorrectness. In assignment 2 we found a positive non-significant
correlation (0.41) between the responses to relative correctness
and correctness. Finally, in assignment 3 we found a significant
correlation (0.610) between the students who agreed that the
program is relatively correct and those who agreed that the
program is correct as well as strong negative correlation (-0.595)
with those who agreed that the program is incorrect.
These correlations point out that the notion of “relative
correctness” is common among students and that it sometimes
completely overlaps with the concept of correctness (unlike the

dichotomy presented by Joni & Soloway, 1986). Furthermore,
these findings support our hypothesis that students conceptualize
correctness as essentially relative.
The student’s comments support the hypothesis too. While
students clearly understood that the I/O behavior is not optimal
their explanations reveal that their red line for correctness is
different than that of the dichotomous definition:
 “The program (assignment 1) fulfills its requirements even
though it prints unnecessary output.”
 “The program (assignment 2) is not perfect but it works and
that’s what counts.”
“The program (assignment 3) is correct but it is not finished.”

Rank Responses High school, N=24 College, N=16

 Correct Incorrect Relative Assignment
1

Assignment
2

Assignment
3

Assignment
1

Assignment
2

Assignment
3

1 X √ X 38% 58% 83% 31% 19% 44%
2 X √ √ 50% 13% 0% 25% 13% 6%
3 √ X √ 0% 13% 8% 25% 25% 13%
3a √ X X 0% 0% 4% 0% 13% 13%
4 Indecisiveness 12% 16% 5% 19% 30% 24%

 100% 100% 100% 100% 100% 100%

41

Furthermore, we would have expected that students would include
the logical mistake (in the nested if-sentences) that causes the
incorrect I/O behavior of assignment 1. However, there were no
references to the structure of the program; instead students
quantified the relative part of the input to which the program
produced the expected output as exemplified in the quotes above.

5. DISCUSSION
5.1 Students’ Work Habits and Standards
A significant number of students agreed that “When I test a
program I systematically verify that I checked all the possible
input examples.” However, many of the same students agreed at
the same time that there is still a possibility that there is an input
example that they did not cover at all. Furthermore, many of them
agreed that they sometimes use verification methods professionals
would not consider as neither systematic nor adequate, such as
that they do not calculate the expected output but rather estimate
the reasonability of the displayed output or even worst that they
sometimes do not even execute the program once. Finally, about
half of the students of both groups reported that they conclude on
correctness when the program works for many input examples.
The discrepancies between students’ inadequate methods and their
positive conceptions of these methods are consistent with other
works described above [5, 6, 10] as well as with our previous
insights regarding students’ (mis)conceptions of thorough testing
[3]. We, thus, concluded that students have different standards of
what constitute systematic examination which governs their
performance (Figure 2).

Figure 2: Students’ conceptions of testing

5.2 Students’ Definition of Correctness

Our conclusions regarding students’ understanding (namely
definitions) of correctness are summarized in figure 3.

Figure 3: the students’ definition of correctness

First, the fact that many students decided that the program of
assignment 1 was correct even though they were given the simple
code, the goal, and an input example that reflects the incorrect I/O
behavior implies that students’ standards for a “working” program

do not necessarily stress the requirement for correct I/O behavior
for all the input of the problem space. Instead they soften this
requirement to a correct I/O behavior for most or many parts of the
input domain. This definition reflects their tolerance to errors.
In addition, the students’ responses in assignment 2 and assignment
3 were quite different despite the fact that the descriptions of the
programs’ goals and the incorrect I/O behaviors were similar. Most
students recognized that the program that concerned their families
was incorrect while they tolerated a similar incorrect I/O behavior
in assignment 2 that concerned unknown calculations. This implies
that students’ standards of correctness are influenced by subjective
factors unlike the nature of professionals’ understanding of
correctness. This insight is important because these standards
govern our performance when we encounter unexpected output;
probably, students would have behaved differently if they
encounter the situations described in these two assignments.
A possible explanation is that students judge the quality of the
programs from a user point of view, and thus, a meaningless
sequence of numbers would not be damaged by an additional
number, whereas a mistake about your own family is noticeable
and intolerable.
Most importantly, students’ tolerance to errors is coherent with
their (mis)judgment of programs that have incorrect I/O behavior as
correct, what cause this inadequate knowledge to be robust to
teachers’ instruction.
Finally, the existence of the notion of relative correctness was
found to be evident. This notion is compatible with students’
preference to develop programs hands-on the computer by writing
the first idea they have in mind and iteratively test it by executions
and refine it locally as well as their acceptance of errors as almost
unavoidable (in relatively simple program).
The fact that the performance of the college students was poorer
than that of the high-school students raises a worrying issue.
Arguably, college students gained experience of developing
complicated software and thus realized that error-free programs is
rare. Besides, much best-sold software produce sequences of
versions where each version addresses errors found in the former
version. Yet, this does not explain the fact that so many students
did not recognize that the short program in assignment 1 was
incorrect. Is it possible that while in high-school to some extent
students’ understandings of correctness intersect with the black-or-
white definition but when they move on and gain more formal
experience their attitude changes? In the future we plan to expand
the investigation to include university level, to include a larger
number of students, and to inquire about students’ attitude toward
different incorrect I/O behaviors, such as missing output items.

6. CONCLUSIONS
We found that students’ definitions for correctness and systematic
testing are different than those of professionals. Students’
understand correctness as a relative property of the program and
tolerate errors. This definition settles well with their definition of
systematic testing that overlaps with work methods that
professionals consider inadequate.

Testing = Systematic examination of input examples
WHERE systematic = all input examples I could think of,
Examination = (sometimes) estimation of output
reasonability

Correct program = working program
Working program = exhibit reasonable I/O for many legal
inputs
Reasonable output = mostly correct but also incorrect
output OR output that looks like what one would expect*
the program to display

*expectations vary according to subjective factors // or tolerance
toward the unexpected varies according to subjective factors

42

7. REFERENCES
[1] Ben-David Kolikant, Y., & Ben-Ari, M. (Submitted). Fertile

Zones of Cultural encounter.
[2] Ben-David Kolikant, Y, & Pollack, S. (2004). Establishing

computer science professional norms among high-school
students, Computer Science Education, 14, 1, 21-35.

[3] Ben-David Kolikant, Y., & Pollack, S. (Submitted).
Negotiating professional norms with informally technology
experienced students: what goes wrong?

[4] Edwards, S. H. (2004). Using software testing to move
students from trial-and–error to reflection-in-action.
SIGCSE`04, March, Norfolk, Virginia, 26-30.

[5] Fleury, A. E (1993). Students beliefd about Pascal
programming, Journal of Educational Computing
Research, 9(3), 355-371.

[6] Iftikhar, B. (2004). Including Validation, Verification,
and Debugging techniques in UTCS Curriculum,
http://www.cs.utexas.edu/users/almstrum/cs370/iftikhar/
final.html.

[7] Joni, S., & Soloway, E. (1986). 'But my program runs.’
Discourse rules for novice programmers, Journal of
Educational Computing Research, 2(1), 95–125.

[8] Leventhal, L. M., Teaslley, B. E., & Schertler Rohlman, D.
(1994). Analyses of factors related to positive test bias in
software testing, International Journal of Human
Computer Studies, 41,717-749.

[9] McCracken, W. M., Almstrum, V., Diaz, D., Guzdial, M.,
Hagan, D., Ben-David Kolikant, Y.,Laxer, C., Thomas, L.,
Utting, I., Wilusz, T., 2001. A multi-national, multi-
institutional study of assessment of programming skills of
first-year computer science students. SIGCSE Bulletin. 33
(4), 125-140.

[10] Scott, E., Zadirov, A., Feinberg, S., & Jayakody, R.
(2003). Proceedings of Informing Science Educational
Technology Education Joint conference, Pori, Finland,
957-967.

8. ACKNOWLEDGMENTS
I thank Sarah Polack, Iris Ben-David Hadar, and Moti Ben-Ari for
commenting on earlier drafts of this manuscript.

43

