Error Control

- **Automatic Repeat Request (ARQ)**
 - A lost message will be retransmitted by the sender
 - Error detection (redundancy) > handle as loss
 - Needs a return path ("acknowledgement")
 - In the exercise: Ask the sender again if you don’t know the word, or if you feel unsure.

- **Forward error control (FEC)**
 - Redundancy to correct errors
 - Does not need return path
 - In the exercise: The sender spells a word, or point out difficulties. Repeat a word.

ARQ: Loss Detection at Sender

Problems:
- appropriate values for the timers
 - Timeout > RTT
 - RTT not known a priori, not constant
- control messages can get lost

ARQ: Loss Detection at Receiver

Problems:
- exchange of control information must be made reliable (loss detection for control information)
- appropriate values for the timers

Advantage:
- no unnecessary retransmissions

Alternatives:
- checksum based
 - gap based (if messages arrive in order)
 - gap in sequence numbers > NAK
 - problem: last message

ARQ: Acknowledgement Schemes

- **Cumulative ACK**
 - ACK(x) = message i is received ∀ i<x (receiver expects message x)
 + redundancy (ACK(j) can get lost; j<x)
 + simplicity (one number)
 - can not justify message j (i+1 < j < i+k) if message i is lost until message i is received

- **Selective ACK**
 - ACK(x1, x2, ...) = message i is received ∀ i ∈ {x1, x2, ...}
 - loss of redundancy (option: send each ACK sequence number in multiple ACK messages; combined with cumulative ACK)

- **Negative ACK (NAK)**
 + speed-up
 + reduce dependance on good timeout mechanisms
ARQ: Retransmission Schemes 1

- Independent of strategies used for loss detection and acknowledgement generation!
- ARQ Protocols
 - Stop and Wait
 - Go-Back-N
 - Selective Retransmission
- Pipelining: sender allows multiple unacknowledged pkts

ARQ: Retransmission Schemes 2

Go-Back-N (w/o window)

- no need for a queue at the receiver
- inefficient use of transmission capacity

Sender
- Resend all sent but not ack:ed PDUs.
 - Timeout:
 - 1 single timer (oldest not ack:ed PDU)
 - ACK > reset timer

Receiver
- PDU in-order: send ACK, deliver to application
- PDU out-of-order: send ACK of last in-order PDU.
 - cumulative ACK natural
 - not buffered

ARQ: Retransmission Schemes 3

Selective Repeat (w/o window)

Sender
- Resend only oldest not acked PDU.
 - selective ACK > Timeout: Individual timers
 - cumulative ACK > Timeout: one timer

Receiver
- PDU: individual ACK (in-order or not)
 - Buffer out-of-order PDUs
ARQ: Retransmission Schemes 3

Selective Repeat (w/o window)
- Selective ACK: Retransmission of message i if NAK(i) or TOi
- Cumulative ACK:
 - TOi > send message i; TOi=0 \(i \leq sk
 - avoid unnecessary retransmissions
 - burst errors > requires several RTT to retransmit all lost messages
- messages in receiver buffer have to be reordered (high buffer storage)

S

\[\begin{array}{c}
1 \\
2 \\
3 \\
N \\
N+1 \\
N+2 \\
\end{array} \]

R

ARQ: Efficiency

Stop & Wait	Go-Back-N	Selective Repeat
\[\begin{array}{c}
1 \\
2 \\
3 \\
\end{array} \] | \[\begin{array}{c}
1 \\
2 \\
3 \\
\end{array} \] | \[\begin{array}{c}
1 \\
2 \\
3 \\
4 \\
\end{array} \]

efficiency = channel usage for successful transmissions

\[
\frac{(1-p)T}{T+\alpha} = \frac{1-p}{1+2\alpha} \quad \frac{(1-p)T}{T+\alpha 2P} \quad \frac{(1-p)T}{T} = 1-p
\]

T: Transmission time (size/rate)
P: Propagation time (distance/speed)
A = P/T: measure about un-ack'd messages
(Satellite: A>>1; LAN: A ~0)

ARQ: Timeout

Forward Error Correction (FEC)

- Transmit redundant information that can be used to reconstruct lost or erroneous packets at the receiver.

- Advantage: avoidance of retransmissions. This is meaningful for long communication delays (satellite link, compact disc).

- Problem: redundant information is not efficient.

- Example 1: Redundancy
 - Messages T1,T2,T3
 - send T1,T2,T3,R1,R2 with R1=T1⊕T2, R2=T2⊕T3

- Example 2: Error correcting codes
 - e.g., Hamming code
Error Control in TCP

- Loss detection: sender based (Timer)
 - adaptive timeout calculation
 - triple duplicate ACK

- Acknowledgement: cumulative ACK
 - sequence number: next octet that the receiver expects to get.
 - variable message length; retransmitted messages can include more than the original.

- Retransmission: (no specification)
 - until 1987: GBN
 - since 1987: Selective Retransmit
 - proposed modification: selective ACK