
2: Application Layer 1

Chapter 2
Application Layer

2: Application Layer 2

Chapter 2: Application layer

r 2.1 Principles of
network applications

r 2.2 Web and HTTP
r 2.3 FTP
r 2.4 Electronic Mail

 SMTP, POP3, IMAP
r 2.5 DNS

r 2.6 P2P application

2: Application Layer 3

Chapter 2: Application Layer
Our goals:
r conceptual,

implementation
aspects of network
application protocols
 transport-layer

service models
 client-server

paradigm
 peer-to-peer

paradigm

r learn about protocols
by examining popular
application-level
protocols
 HTTP
 FTP
 SMTP / POP3 / IMAP
 DNS

r programming network
applications
 socket API

2: Application Layer 4

Some network apps

r e-mail
r web
r instant messaging
r remote login
r P2P file sharing
r multi-user network

games
r streaming stored video

clips

r voice over IP
r real-time video

conferencing

2: Application Layer 5

Chapter 2: Application layer

r 2.1 Principles of
network applications

r 2.2 Web and HTTP
r 2.3 FTP
r 2.4 Electronic Mail

 SMTP, POP3, IMAP
r 2.5 DNS

r 2.6 P2P applications

2: Application Layer 6

Application architectures

r Client-server
r Peer-to-peer (P2P)
r Hybrid of client-server and P2P

2: Application Layer 7

Client-server architecture
server:

 always-on host
 permanent IP address
 server farms for

scaling
clients:

 communicate with server
 may be intermittently

connected
 may have dynamic IP

addresses
 do not communicate

directly with each other

client/server

2: Application Layer 8

Pure P2P architecture

r no always-on server
r arbitrary end systems

directly communicate
r peers are intermittently

connected and change IP
addresses

Highly scalable but
difficult to manage

peer-peer

2: Application Layer 9

Hybrid of client-server and P2P
Instant messaging

 chatting between two users is P2P
 centralized service: client presence

detection/location
• user registers its IP address with central

server when it comes online
• user contacts central server to find IP

addresses of buddies

2: Application Layer 10

Processes communicating

Process: program running
within a host.

r within same host, two
processes communicate
using inter-process
communication (defined
by OS).

r processes in different
hosts communicate by
exchanging messages

Client process: process
that initiates
communication

Server process: process
that waits to be
contacted

2: Application Layer 11

Sockets

r process sends/receives
messages to/from its
socket

r API: (1) choice of
transport protocol;

 (2) ability to fix a few
parameters

 (lots more on this later)

process

TCP with
buffers,
variables

socket

host or
server

process

TCP with
buffers,
variables

socket

host or
server

Internet

controlled
by OS

controlled by
app developer

2: Application Layer 12

Addressing processes
r to receive messages,

process must have
identifier

r host device has unique
32-bit IP address

r Q: does IP address of
host suffice for
identifying the process?

2: Application Layer 13

Addressing processes
r to receive messages,

process must have
identifier

r host device has unique
32-bit IP address

r Q: does IP address of
host on which process
runs suffice for
identifying the
process?
 A: No, many

processes can be
running on same host

r identifier includes both
IP address and port
numbers associated with
process on host.

r Example port numbers:
 HTTP server: 80
 Mail server: 25

r to send HTTP message
to gaia.cs.umass.edu web
server:
 IP address: 128.119.245.12
 Port number: 80

r more shortly…

2: Application Layer 14

App-layer protocol defines

r Types of messages
exchanged,
 e.g., request, response

r Message syntax:
 what fields in messages &

how fields are delineated
r Message semantics

 meaning of information in
fields

r Rules for when and how
processes send &
respond to messages

Public-domain protocols:
r defined in RFCs
r allows for

interoperability
r e.g., HTTP, SMTP
Proprietary protocols:
r e.g., Skype

2: Application Layer 15

What transport service does an app need?

Data loss
r some apps (e.g., audio) can

tolerate some loss
r other apps (e.g., file

transfer, telnet) require
100% reliable data
transfer

Timing
r some apps (e.g.,

Internet telephony,
interactive games)
require low delay to be
“effective”

Throughput
r some apps (e.g.,

multimedia) require
minimum amount of
throughput to be
“effective”

r other apps (“elastic
apps”) make use of
whatever throughput they
get

Security
r Encryption, data

integrity, …

2: Application Layer 16

Transport service requirements of common apps

Application

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games
instant messaging

Data loss

Throughput

elastic
elastic
elastic
audio: 5kbps-1Mbps
video:10kbps-5Mbps
same as above
few kbps up
elastic

Time Sensitive

2: Application Layer 17

Transport service requirements of common apps

Application

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games
instant messaging

Data loss

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

Throughput

elastic
elastic
elastic
audio: 5kbps-1Mbps
video:10kbps-5Mbps
same as above
few kbps up
elastic

Time Sensitive

no
no
no
yes, 100’s
msec

yes, few secs
yes, 100’s
msec
yes and no

2: Application Layer 18

Internet transport protocols services

TCP service:
r connection-oriented: setup

required between client and
server processes

r reliable transport between
sending and receiving process

r flow control: sender won’t
overwhelm receiver

r congestion control: throttle
sender when network
overloaded

r does not provide: timing,
minimum throughput
guarantees, security

UDP service:
r unreliable data transfer

between sending and
receiving process

r does not provide:
connection setup,
reliability, flow control,
congestion control, timing,
throughput guarantee, or
security

Q: why bother? Why is
there a UDP?

2: Application Layer 19

Internet apps: application, transport protocols

Application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

Internet telephony

Application
layer protocol

Underlying
transport protocol

2: Application Layer 20

Internet apps: application, transport protocols

Application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

Internet telephony

Application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]
HTTP (eg Youtube),
RTP [RFC 1889]
SIP, RTP, proprietary
(e.g., Skype)

Underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

typically UDP

2: Application Layer 21

Chapter 2: Application layer

r 2.1 Principles of
network applications
 app architectures
 app requirements

r 2.2 Web and HTTP
r 2.4 Electronic Mail

 SMTP, POP3, IMAP
r 2.5 DNS

r 2.6 P2P applications
r 2.7 Socket programming

with TCP
r 2.8 Socket programming

with UDP

2: Application Layer 22

Web and HTTP

First some jargon
r Web page consists of objects
r Object can be HTML file, JPEG image, Java

applet, audio file,…
r Web page consists of base HTML-file which

includes several referenced objects
r Each object is addressable by a URL
r Example URL:
 www.someschool.edu/someDept/pic.gif

host name path name

2: Application Layer 23

HTTP overview

HTTP: hypertext
transfer protocol

r Web’s application layer
protocol

r client/server model
 client: browser that

requests, receives,
“displays” Web objects

 server: Web server
sends objects in
response to requests

PC running
Explorer

Server
running

Apache Web
server

Mac running
Navigator

2: Application Layer 24

HTTP overview (continued)

Uses TCP:
r client initiates TCP

connection (creates socket)
to server, port 80

r server accepts TCP
connection from client

r HTTP messages (application-
layer protocol messages)
exchanged between browser
(HTTP client) and Web
server (HTTP server)

r TCP connection closed

HTTP is “stateless”
r server maintains no

information about
past client requests

2: Application Layer 25

Uploading form input

Post method:
r Web page often

includes form input
r Input is uploaded to

server in entity body

URL method:
r Uses GET method
r Input is uploaded in

URL field of request
line:

www.somesite.com/animalsearch?monkeys&banana

2: Application Layer 26

HTTP response message

HTTP/1.1 200 OK
Connection close
Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998 …...
Content-Length: 6821
Content-Type: text/html

data data data data data ...

status line
(protocol

status code
status phrase)

header
 lines

data, e.g.,
requested
HTML file

2: Application Layer 27

HTTP response status codes

200 OK
 request succeeded, requested object later in this message

301 Moved Permanently
 requested object moved, new location specified later in

this message (Location:)
400 Bad Request

 request message not understood by server
404 Not Found

 requested document not found on this server
505 HTTP Version Not Supported

In first line in server->client response message.
A few sample codes:

2: Application Layer 28

User-server state: cookies

Many major Web sites
use cookies

Four components:
1) cookie header line of

HTTP response message
2) cookie header line in

HTTP request message
3) cookie file kept on

user’s host, managed
by user’s browser

4) back-end database at
Web site

Example:
r Susan always access

Internet always from PC
r visits specific e-

commerce site for first
time

r when initial HTTP
requests arrives at site,
site creates:
 unique ID
 entry in backend

database for ID

2: Application Layer 29

Cookies: keeping “state” (cont.)
client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734
usual http request msg Amazon server

creates ID
1678 for user create

 entry

usual http response
Set-cookie: 1678

ebay 8734
amazon 1678

usual http request msg
cookie: 1678 cookie-

spectific
action

access
ebay 8734
amazon 1678

backend
database

2: Application Layer 30

Cookies (continued)
What cookies can bring:
r authorization
r shopping carts
r recommendations
r user session state

(Web e-mail)

Cookies and privacy:
r cookies permit sites to

learn a lot about you
r you may supply name

and e-mail to sites

aside

How to keep “state”:
r protocol endpoints: maintain state

at sender/receiver over multiple
transactions

r cookies: http messages carry state

2: Application Layer 31

Web caches (proxy server)

r user sets browser:
Web accesses via
cache

r browser sends all
HTTP requests to
cache
 object in cache: cache

returns object
 else cache requests

object from origin
server, then returns
object to client

Goal: satisfy client request without involving origin server

client

Proxy
server

client
origin
server

origin
server

2: Application Layer 32

More about Web caching

r cache acts as both
client and server

r typically cache is
installed by ISP
(university, company,
residential ISP)

Why Web caching?
r reduce response time

for client request
r reduce traffic on an

institution’s access
link.

r Internet dense with
caches: enables “poor”
content providers to
effectively deliver
content (but so does
P2P file sharing)

2: Application Layer 33

Chapter 2: Application layer

r 2.1 Principles of
network applications

r 2.2 Web and HTTP
r 2.3 FTP
r 2.4 Electronic Mail

 SMTP, POP3, IMAP
r 2.5 DNS

r 2.6 P2P applications

2: Application Layer 34

FTP: the file transfer protocol

r transfer file to/from remote host
r client/server model

 client: side that initiates transfer (either to/from
remote)

 server: remote host
r ftp: RFC 959
r ftp server: port 21

file transfer FTP
server

FTP
user

interface

FTP
client

local file
system

remote file
system

user
at host

2: Application Layer 35

FTP: separate control, data connections

r FTP client contacts FTP server
at port 21, TCP is transport
protocol

r client authorized over control
connection

r client browses remote
directory by sending commands
over control connection.

r when server receives file
transfer command, server
opens 2nd TCP connection (for
file) to client

r after transferring one file,
server closes data connection.

FTP
client

FTP
server

TCP control connection
port 21

TCP data connection
port 20

r server opens another TCP
data connection to transfer
another file.

r control connection: “out of
band”

r FTP server maintains “state”:
current directory, earlier
authentication

2: Application Layer 36

Chapter 2: Application layer

r 2.1 Principles of
network applications

r 2.2 Web and HTTP
r 2.3 FTP
r 2.4 Electronic Mail

 SMTP, POP3, IMAP
r 2.5 DNS

r 2.6 P2P applications

2: Application Layer 37

Electronic Mail

Three major components:
r user agents
r mail servers
r simple mail transfer

protocol: SMTP

User Agent
r a.k.a. “mail reader”
r composing, editing, reading

mail messages
r e.g., Eudora, Outlook, elm,

Mozilla Thunderbird
r outgoing, incoming messages

stored on server

user mailbox

outgoing
message queue

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

2: Application Layer 38

Electronic Mail: mail servers

Mail Servers
r mailbox contains incoming

messages for user
r message queue of outgoing

(to be sent) mail messages
r SMTP protocol between mail

servers to send email
messages
 client: sending mail

server
 “server”: receiving mail

server

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

2: Application Layer 39

Electronic Mail: SMTP [RFC 2821]

r uses TCP to reliably transfer email message from client
to server, port 25

r direct transfer: sending server to receiving server
r three phases of transfer

 handshaking (greeting)
 transfer of messages
 closure

r command/response interaction
 commands: ASCII text
 response: status code and phrase

r messages must be in 7-bit ASCII

2: Application Layer 40

Scenario: Alice sends message to Bob
1) Alice uses UA to compose

message and “to”
bob@someschool.edu

2) Alice’s UA sends message
to her mail server; message
placed in message queue

3) Client side of SMTP opens
TCP connection with Bob’s
mail server

4) SMTP client sends Alice’s
message over the TCP
connection

5) Bob’s mail server places
the message in Bob’s
mailbox

6) Bob invokes his user agent
to read message

user
agent

mail
server

mail
server user

agent

1

2 3 4 5
6

2: Application Layer 41

Mail message format

SMTP: protocol for
exchanging email msgs

RFC 822: standard for text
message format:

r header lines, e.g.,
 To:
 From:
 Subject:
different from SMTP

commands!
r body

 the “message”, ASCII
characters only

header

body

blank
line

2: Application Layer 42

Mail access protocols

r SMTP: delivery/storage to receiver’s server
r Mail access protocol: retrieval from server

 POP: Post Office Protocol [RFC 1939]
• authorization (agent <-->server) and download

 IMAP: Internet Mail Access Protocol [RFC 1730]
• more features (more complex)
• manipulation of stored msgs on server

 HTTP: gmail, Hotmail, Yahoo! Mail, etc.

user
agent

sender’s mail
server

user
agent

SMTP SMTP access
protocol

receiver’s mail
server

2: Application Layer 43

Chapter 2: Application layer

r 2.1 Principles of
network applications

r 2.2 Web and HTTP
r 2.3 FTP
r 2.4 Electronic Mail

 SMTP, POP3, IMAP
r 2.5 DNS

r 2.6 P2P applications

2: Application Layer 44

DNS: Domain Name System

People: many identifiers:
 SSN, name, passport #

Internet hosts, routers:
 IP address (32 bit) -

used for addressing
datagrams

 “name”, e.g.,
ww.yahoo.com - used by
humans

Q: map between IP
addresses and name ?

Domain Name System:
r distributed database

implemented in hierarchy of
many name servers

r application-layer protocol
host, routers, name servers to
communicate to resolve names
(address/name translation)
 note: core Internet

function, implemented as
application-layer protocol

 complexity at network’s
“edge”

2: Application Layer 45

DNS
Why not centralize DNS?
r single point of failure
r traffic volume
r distant centralized

database
r maintenance

doesn’t scale!

DNS services
r hostname to IP

address translation
r host aliasing

 Canonical, alias names
r mail server aliasing
r load distribution

 replicated Web
servers: set of IP
addresses for one
canonical name

2: Application Layer 46

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS servers yahoo.com

DNS servers
amazon.com
DNS servers

pbs.org
DNS servers

Distributed, Hierarchical Database

Client wants IP for www.amazon.com; 1st approx:
r client queries a root server to find com DNS server
r client queries com DNS server to get amazon.com

DNS server
r client queries amazon.com DNS server to get IP

address for www.amazon.com

2: Application Layer 47

DNS: Root name servers
r contacted by local name server that can not resolve name
r root name server:

 contacts authoritative name server if name mapping not known
 gets mapping
 returns mapping to local name server

 13 root name
servers worldwide

b USC-ISI Marina del Rey, CA
l ICANN Los Angeles, CA

e NASA Mt View, CA
f Internet Software C. Palo Alto,
CA (and 36 other locations)

i Autonomica, Stockholm (plus
28 other locations)

k RIPE London (also 16 other locations)

m WIDE Tokyo (also Seoul,
Paris, SF)

a Verisign, Dulles, VA
c Cogent, Herndon, VA (also LA)
d U Maryland College Park, MD
g US DoD Vienna, VA
h ARL Aberdeen, MD
j Verisign, (21 locations)

2: Application Layer 48

TLD and Authoritative Servers

r Top-level domain (TLD) servers:
 responsible for com, org, net, edu, etc, and all

top-level country domains uk, fr, ca, jp.
 Network Solutions maintains servers for com TLD
 Educause for edu TLD

r Authoritative DNS servers:
 organization’s DNS servers, providing

authoritative hostname to IP mappings for
organization’s servers (e.g., Web, mail).

 can be maintained by organization or service
provider

2: Application Layer 49

Local Name Server

r does not strictly belong to hierarchy
r each ISP (residential ISP, company,

university) has one.
 also called “default name server”

r when host makes DNS query, query is sent
to its local DNS server
 acts as proxy, forwards query into hierarchy

2: Application Layer 50

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server
dns.cs.umass.edu

7 8

TLD DNS server

DNS name
resolution example

r Host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

iterated query:
r contacted server

replies with name of
server to contact

r “I don’t know this
name, but ask this
server”

2: Application Layer 51

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2

4 5

6

authoritative DNS server
dns.cs.umass.edu

7

8

TLD DNS server

3 recursive query:
r puts burden of name

resolution on
contacted name
server

r heavy load?

DNS name
resolution example

2: Application Layer 52

DNS: caching and updating records

r once (any) name server learns mapping, it caches
mapping
 cache entries timeout (disappear) after some

time
 TLD servers typically cached in local name

servers
• Thus root name servers not often visited

r update/notify mechanisms under design by IETF
 RFC 2136
 http://www.ietf.org/html.charters/dnsind-charter.html

2: Application Layer 53

Inserting records into DNS
r example: new startup “Network Utopia”
r register name networkuptopia.com at DNS registrar

(e.g., Network Solutions)
 provide names, IP addresses of authoritative name server

(primary and secondary)
 registrar inserts two RRs into com TLD server:

(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)

r create authoritative server Type A record for
www.networkuptopia.com; Type MX record for
networkutopia.com

r How do people get IP address of your Web site?

2: Application Layer 54

Chapter 2: Application layer

r 2.1 Principles of
network applications
 app architectures
 app requirements

r 2.2 Web and HTTP
r 2.4 Electronic Mail

 SMTP, POP3, IMAP
r 2.5 DNS

r 2.6 P2P applications

2: Application Layer 55

Pure P2P architecture

r no always-on server
r arbitrary end systems

directly communicate
r peers are intermittently

connected and change IP
addresses

r Three topics:
 File distribution
 Searching for information
 Case Study: Skype

peer-peer

2: Application Layer 56

File Distribution: Server-Client vs P2P
Question : How much time to distribute file

from one server to N peers?

us

u2 d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

File, size F

us: server upload
bandwidth
ui: peer i upload
bandwidth

di: peer i download
bandwidth

2: Application Layer 57

File distribution time: server-client

us

u2 d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

F
r server sequentially

sends N copies:
 NF/us time

r client i takes F/di
time to download

increases linearly in N
(for large N)

= dcs = max { NF/us, F/min(di) } i

Time to distribute F
to N clients using

client/server approach

2: Application Layer 58

File distribution time: P2P

us

u2 d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

F
r server must send one

copy: F/us time
r client i takes F/di time

to download
r NF bits must be

downloaded (aggregate)
r fastest possible upload rate: us + Σui

dP2P = max { F/us, F/min(di) , NF/(us + Σui) } i

2: Application Layer 59

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
um

 D
is

tri
bu

tio
n

Ti
m

e P2P
Client-Server

Server-client vs. P2P: example
Client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

2: Application Layer 60

File distribution: BitTorrent

tracker: tracks peers
participating in torrent

torrent: group of
peers exchanging
chunks of a file

obtain list
of peers

trading
chunks

peer

r P2P file distribution

2: Application Layer 61

BitTorrent
r file divided into 256KB chunks.
r peer joining torrent:

 has no chunks, but will accumulate them over time
 registers with tracker to get list of peers,

connects to subset of peers (“neighbors”)
r while downloading, peer uploads chunks to other

peers.
r peers may come and go
r once peer has entire file, it may (selfishly) leave or

(altruistically) remain

2: Application Layer 62

P2P: searching for information

File sharing (eg e-mule)
r Index dynamically

tracks the locations of
files that peers share.

r Peers need to tell
index what they have.

r Peers search index to
determine where files
can be found

Instant messaging
r Index maps user

names to locations.
r When user starts IM

application, it needs to
inform index of its
location

r Peers search index to
determine IP address
of user.

Index in P2P system: maps information to peer location
(location = IP address & port number)

2: Application Layer 63

P2P: centralized index

original “Napster” design
1) when peer connects, it

informs central server:
 IP address
 content

2) Alice queries for “Hey
Jude”

3) Alice requests file from
Bob

centralized
directory server

peers

Alice

Bob

1

1

1

1 2

3

2: Application Layer 64

P2P: problems with centralized directory

r single point of failure
r performance bottleneck
r copyright infringement:

“target” of lawsuit is
obvious

 file transfer is
decentralized, but
locating content is
highly centralized

2: Application Layer 65

Query flooding

r fully distributed
 no central server

r used by Gnutella
r Each peer indexes the

files it makes available
for sharing (and no
other files)

overlay network: graph
r edge between peer X

and Y if there’s a TCP
connection

r all active peers and
edges form overlay net

r edge: virtual (not
physical) link

r given peer typically
connected with < 10
overlay neighbors

2: Application Layer 66

Query flooding

Query

QueryHit

Query

QueryHit

File transfer:
HTTP r Query message

sent over existing TCP
connections
r peers forward
Query message
r QueryHit
sent over
reverse
path

Scalability:
limited scope
flooding

2: Application Layer 67

Hierarchical Overlay

r between centralized
index, query flooding
approaches

r each peer is either a
super node or assigned to
a super node
 TCP connection between

peer and its super node.
 TCP connections between

some pairs of super nodes.
r Super node tracks content

in its children

ordinary peer

group-leader peer

neighoring relationships
in overlay network

2: Application Layer 68

P2P Case study: Skype

r inherently P2P: pairs
of users communicate.

r proprietary
application-layer
protocol (inferred via
reverse engineering)

r hierarchical overlay
with SNs

r Index maps usernames
to IP addresses;
distributed over SNs

Skype clients (SC)

Supernode
(SN)

Skype
login server

2: Application Layer 69

Chapter 2: Summary

r application architectures
 client-server
 P2P
 hybrid

r application service
requirements:
 reliability, bandwidth,

delay
r Internet transport

service model
 connection-oriented,

reliable: TCP
 unreliable, datagrams: UDP

our study of network apps now complete!
r specific protocols:

 HTTP
 FTP
 SMTP, POP, IMAP
 DNS
 P2P: BitTorrent, Skype

	Slide Number 1
	Chapter 2: Application layer
	Chapter 2: Application Layer
	Some network apps
	Chapter 2: Application layer
	Application architectures
	Client-server architecture
	Pure P2P architecture
	Hybrid of client-server and P2P
	Processes communicating
	Sockets
	Addressing processes
	Addressing processes
	App-layer protocol defines
	What transport service does an app need?
	Transport service requirements of common apps
	Transport service requirements of common apps
	Internet transport protocols services
	Internet apps: application, transport protocols
	Internet apps: application, transport protocols
	Chapter 2: Application layer
	Web and HTTP
	HTTP overview
	HTTP overview (continued)
	Uploading form input
	HTTP response message
	HTTP response status codes
	User-server state: cookies
	Cookies: keeping “state” (cont.)
	Cookies (continued)
	Web caches (proxy server)
	More about Web caching
	Chapter 2: Application layer
	FTP: the file transfer protocol
	FTP: separate control, data connections
	Chapter 2: Application layer
	Electronic Mail
	Electronic Mail: mail servers
	Electronic Mail: SMTP [RFC 2821]
	Scenario: Alice sends message to Bob
	Mail message format
	Mail access protocols
	Chapter 2: Application layer
	DNS: Domain Name System
	DNS
	Distributed, Hierarchical Database
	DNS: Root name servers
	TLD and Authoritative Servers
	Local Name Server
	DNS name �resolution example
	DNS name �resolution example
	DNS: caching and updating records
	Inserting records into DNS
	Chapter 2: Application layer
	Pure P2P architecture
	File Distribution: Server-Client vs P2P
	File distribution time: server-client
	File distribution time: P2P
	Slide Number 59
	File distribution: BitTorrent
	BitTorrent
	P2P: searching for information
	P2P: centralized index
	P2P: problems with centralized directory
	Query flooding
	Query flooding
	Hierarchical Overlay
	P2P Case study: Skype
	Chapter 2: Summary

