Chapter 4 Network Layer

Chapter 4: Network Layer

- r 4.1 Introduction
- r 4.2 Virtual circuit and datagram networks
- r 4.3 What's inside a router
- r 4.4 IP: Internet Protocol
 - m Datagram format
 - m IPv4 addressing
 - m ICMP
 - m IPv6

- r 4.5 Routing algorithms
 - m Link state
 - m Distance Vector
 - m Hierarchical routing
- r 4.6 Routing in the Internet
 - m RIP
 - m OSPF
 - m BGP
- r 4.7 Broadcast and multicast routing

Network layer

- r network layer protocols in *every* host, router
- r router examines header fields in all IP datagrams passing through it

Two Key Network-Layer Functions

- r forwarding: move packets from router's input to appropriate router output
- r routing: determine route taken by packets from source to dest.

m routing algorithms

analogy:

- r routing: process of planning trip from source to dest
- r forwarding: process of getting through single interchange

Interplay between routing and forwarding

Chapter 4: Network Layer

- r 4.1 Introduction
- r 4.2 Virtual circuit and datagram networks
- r 4.3 What's inside a router
- r 4.4 IP: Internet Protocol
 - m Datagram format
 - m IPv4 addressing
 - m ICMP
 - m IPv6

- r 4.5 Routing algorithms
 - m Link state
 - m Distance Vector
 - m Hierarchical routing
- r 4.6 Routing in the Internet
 - m RIP
 - m OSPF
 - m BGP
- r 4.7 Broadcast and multicast routing

Network layer connection and connection-less service

- r datagram network provides network-layer connectionless service
- r VC network provides network-layer connection service

Virtual circuits

- "source-to-dest path behaves much like telephone circuit"
 - m performance-wise
 - m network actions along source-to-dest path
- r each packet carries VC identifier (not destination host address)
- r every router on source-dest path maintains "state" for each passing connection
- r link, router resources (bandwidth, buffers) may be allocated to VC (dedicated resources = predictable service)

Forwarding table

Forwarding table in northwest router:

Incoming interface	Incoming VC #	Outgoing interface	Outgoing VC #	
1	12	3	22	
2	63	1	18	
3	7	2	17	
1	97	3	87	

Routers maintain connection state information!

Virtual circuits: signaling protocols

- r used in ATM, frame-relay, X.25
- r not used in today's Internet

<u>Datagram networks</u>

- r no call setup at network layer
- r routers: no state about end-to-end connections
 - m no network-level concept of "connection"
- r packets forwarded using destination host address
 - m packets between same source-dest pair may take different paths

Forwarding table

4 billion possible entries

Destination Address Range	Link Interface
11001000 00010111 00010000 00000000	
through	0
11001000 00010111 00010111 11111111	
11001000 00010111 00011000 00000000	
through	1
11001000 00010111 00011000 11111111	
11001000 00010111 00011001 00000000	
through	2
11001000 00010111 00011111 11111111	
otherwise	3

Longest prefix matching

Prefix Match	Link Interface
11001000 00010111 00010	0
11001000 00010111 00011000	1
11001000 00010111 00011	2
otherwise	3

Examples

DA: 11001000 00010111 00010110 10100001 Which interface?

DA: 11001000 00010111 00011000 10101010 Which interface?

Router Architecture Overview

Two key router functions:

- r run routing algorithms/protocol (RIP, OSPF, BGP)
- r forwarding datagrams from incoming to outgoing link

The Internet Network layer

Host, router network layer functions:

Chapter 4: Network Layer

- r 4.1 Introduction
- r 4.2 Virtual circuit and datagram networks
- r 4.3 What's inside a router
- r 4.4 IP: Internet Protocol
 - m Datagram format
 - m IPv4 addressing
 - m ICMP
 - m IPv6

- r 4.5 Routing algorithms
 - m Link state
 - m Distance Vector
 - m Hierarchical routing
- r 4.6 Routing in the Internet
 - m RIP
 - m OSPF
 - m BGP
- r 4.7 Broadcast and multicast routing

IP datagram format

IP protocol version 32 bits total datagram number length (bytes) header length head. type of length (bytes) service for "type" of data fragment fragmentation/ 16-bit identifier | flgs offset reassembly max number time to upper header remaining hops live layer <u>checksum</u> (decremented at 32 bit source IP address each router) 32 bit destination IP address upper layer protocol to deliver payload to Options (if any) data (variable length, typically a TCP or UDP segment)

IP Fragmentation & Reassembly

- r network links have MTU (max.transfer size)
 - m largest possible link-level frame.
- r large IP datagram divided ("fragmented") within net

m one datagram becomes several datagrams

- m "reassembled" only at final destination
- m IP header bits used to identify, order related fragments

IP Fragmentation and Reassembly

Example

- 4000 byte datagram
- MTU = 1500 bytes

1480 bytes in data field

> offset = 1480/8

One large datagram becomes several smaller datagrams

l llenath	IID	fragflag	offsetl
			* 10E
[=100 <u>0</u>	= X		=182

length	ID	fragflag	offset	
=1040	=x	=0	=370	

Chapter 4: Network Layer

- r 4.1 Introduction
- r 4.2 Virtual circuit and datagram networks
- r 4.3 What's inside a router
- r 4.4 IP: Internet Protocol
 - m Datagram format
 - m IPv4 addressing
 - m ICMP
 - m IPv6

- r 4.5 Routing algorithms
 - m Link state
 - m Distance Vector
 - m Hierarchical routing
- r 4.6 Routing in the Internet
 - m RIP
 - m OSPF
 - m BGP
- r 4.7 Broadcast and multicast routing

IP Addressing: introduction

- r IP address: 32-bit identifier for host, router *interface*
- r *interface*: connection between host/router and physical link
 - m router's typically have multiple interfaces
 - m host typically has one interface
 - m IP addresses associated with each interface

Subnets

r IP address:

- m subnet part (high order bits)
- m host part (low order bits)

r What's a subnet?

- m device interfaces with same subnet part of IP address
- m can physically reach each other without intervening router

network consisting of 3 subnets

Subnets

r To determine the subnets, detach each interface from its host or router, creating islands of isolated networks. Each isolated network is called a subnet.

Subnet mask: /24

Subnets

How many?

IP addressing: CIDR

CIDR: Classless InterDomain Routing

- m subnet portion of address of arbitrary length
- m address format: a.b.c.d/x, where x is # bits in subnet portion of address

200.23.16.0/23

IP addresses: how to get one?

Q: How does a *host* get IP address?

- r hard-coded by system admin in a file
 - m Windows: control-panel->network->configuration->tcp/ip->properties
 - m UNIX: /etc/rc.config
- r DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server
 - m "plug-and-play"

DHCP: Dynamic Host Configuration Protocol

<u>Goal:</u> allow host to <u>dynamically</u> obtain its IP address from network server when it joins network

m Allows reuse of addresses

DHCP client-server scenario

IP addresses: how to get one?

Q: How does *network* get subnet part of IP addr?

A: gets allocated portion of its provider ISP's address space

IP addresses: how to get one?

Q: How does *network* get subnet part of IP addr?

A: gets allocated portion of its provider ISP's address space

ISP's block	11001000	00010111	<u>0001</u> 0000	00000000	200.23.16.0/20
Organization 0 Organization 1					200.23.16.0/23 200.23.18.0/23
Organization 2	11001000	00010111	<u>0001010</u> 0	00000000	200.23.20.0/23
***				• • • • •	• • • •
Organization 7	<u>11001000</u>	00010111	<u>0001111</u> 0	00000000	200.23.30.0/23

Hierarchical addressing: route aggregation

Hierarchical addressing allows efficient advertisement of routing information:

<u>Hierarchical addressing: more specific</u> <u>routes</u>

ISPs-R-Us has a more specific route to Organization 1

NAT: Network Address Translation

All datagrams leaving local network have same single source NAT IP address: 138.76.29.7, different source port numbers

Datagrams with source or destination in this network have 10.0.0/24 address for source, destination (as usual)

NAT: Network Address Translation

- r Motivation: local network uses just one IP address as far as outside world is concerned:
 - m range of addresses not needed from ISP: just one IP address for all devices
 - m can change addresses of devices in local network without notifying outside world
 - m can change ISP without changing addresses of devices in local network
 - m devices inside local net not explicitly addressable, visible by outside world (a security plus).

NAT: Network Address Translation

Chapter 4: Network Layer

- r 4.1 Introduction
- r 4.2 Virtual circuit and datagram networks
- r 4.3 What's inside a router
- r 4.4 IP: Internet Protocol
 - m Datagram format
 - m IPv4 addressing
 - m ICMP
 - m IPv6

- r 4.5 Routing algorithms
 - m Link state
 - m Distance Vector
 - m Hierarchical routing
- r 4.6 Routing in the Internet
 - m RIP
 - m OSPF
 - m BGP
- r 4.7 Broadcast and multicast routing

ICMP: Internet Control Message Protocol

used by hosts & routers Type Code description to communicate network-0 echo reply (ping) 3 dest. network unreachable level information dest host unreachable m error reporting: dest protocol unreachable 3 3 dest port unreachable unreachable host, dest network unknown network, port, dest host unknown protocol source quench (congestion control - not used) m echo request/reply echo request (ping) (used by ping) route advertisement 10 router discovery 11 TTL expired bad IP header 12 0

- r 4.1 Introduction
- r 4.2 Virtual circuit and datagram networks
- r 4.3 What's inside a router
- r 4.4 IP: Internet Protocol
 - m Datagram format
 - m IPv4 addressing
 - m ICMP
 - m IPv6

- r 4.5 Routing algorithms
 - m Link state
 - m Distance Vector
 - m Hierarchical routing
- r 4.6 Routing in the Internet
 - m RIP
 - m OSPF
 - m BGP
- r 4.7 Broadcast and multicast routing

IPv6

- r Initial motivation: 32-bit address space soon to be completely allocated.
- r Additional motivation:
 - m header format helps speed processing/forwarding
 - m header changes to facilitate QoS

IPv6 datagram format:

- m fixed-length 40 byte header
- m no fragmentation allowed

IPv6 Header (Cont)

Priority: identify priority among datagrams in flow Flow Label: identify datagrams in same "flow." (concept of "flow" not well defined).

Next header: identify upper layer protocol for data

Transition From IPv4 To IPv6

- r Not all routers can be upgraded simultaneous
 - m no "flag days"
 - m How will the network operate with mixed IPv4 and IPv6 routers?
- r *Tunneling:* IPv6 carried as payload in IPv4 datagram among IPv4 routers

- r 4.1 Introduction
- r 4.2 Virtual circuit and datagram networks
- r 4.3 What's inside a router
- r 4.4 IP: Internet Protocol
 - m Datagram format
 - m IPv4 addressing
 - m ICMP
 - m IPv6

- r 4.5 Routing algorithms
 - m Link state
 - m Distance Vector
 - m Hierarchical routing
- r 4.6 Routing in the Internet
 - m RIP
 - m OSPF
 - m BGP
- r 4.7 Broadcast and multicast routing

Interplay between routing, forwarding

Graph abstraction

Graph: G = (N,E)

 $N = set of routers = \{ u, v, w, x, y, z \}$

 $E = \text{set of links} = \{ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) \}$

Remark: Graph abstraction is useful in other network contexts

Example: P2P, where N is set of peers and E is set of TCP connections

Graph abstraction: costs

•
$$c(x,x') = cost of link(x,x')$$

$$- e.g., c(w,z) = 5$$

 cost could always be 1, or inversely related to bandwidth, or inversely related to congestion

Cost of path
$$(x_1, x_2, x_3, ..., x_p) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1}, x_p)$$

Question: What's the least-cost path between u and z?

Routing algorithm: algorithm that finds least-cost path

Routing Algorithm classification

Global or decentralized information?

Global:

- r all routers have complete topology, link cost info
- r "link state" algorithms

Decentralized:

- r router knows physicallyconnected neighbors, link costs to neighbors
- r iterative process of computation, exchange of info with neighbors
- r "distance vector" algorithms

Static or dynamic?

Static:

r routes change slowly over time

Dynamic:

- r routes change more quickly
 - m periodic update
 - m in response to link cost changes

- r 4.1 Introduction
- r 4.2 Virtual circuit and datagram networks
- r 4.3 What's inside a router
- r 4.4 IP: Internet Protocol
 - m Datagram format
 - m IPv4 addressing
 - m ICMP
 - m IPv6

- r 4.5 Routing algorithms
 - m Link state
 - m Distance Vector
 - m Hierarchical routing
- r 4.6 Routing in the Internet
 - m RIP
 - m OSPF
 - m BGP
- r 4.7 Broadcast and multicast routing

A Link-State Routing Algorithm

Dijkstra's algorithm

- r net topology, link costs known to all nodes
 - m accomplished via "link state broadcast"
 - m all nodes have same info
- r computes least cost paths from one node ('source") to all other nodes
 - m gives forwarding table for that node
- r iterative: after k iterations, know least cost path to k dest.'s

Notation:

- r C(x,y): link cost from node x to y; = ∞ if not direct neighbors
- r D(v): current value of cost of path from source to dest. v
- r p(v): predecessor node along path from source to v
- r N': set of nodes whose least cost path definitively known

Dijsktra's Algorithm

```
Initialization:
  N' = \{u\}
3 for all nodes v
     if v adjacent to u
       then D(v) = c(u,v)
6
     else D(v) = \infty
   Loop
    find w not in N' such that D(w) is a minimum
10 add w to N'
    update D(v) for all v adjacent to w and not in N':
12 D(v) = min(D(v), D(w) + c(w,v))
13 /* new cost to v is either old cost to v or known
    shortest path cost to w plus cost from w to v */
15 until all nodes in N'
```

Dijkstra's algorithm: example

Step		N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
	0	u	2,u	5,u	1,u	∞	∞
	1	ux					
	2						
	3						
	4						
	5						

Dijkstra's algorithm: example

Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,u	1,u	∞	∞
1	ux ←	2,u	4,x		2,x	∞
2	uxy <mark>←</mark>	2,u	3,y			4,y
3	uxyv		3,y			4,y
4	uxyvw ←					4,y
5	uxyvwz 🗲					

Dijkstra's algorithm: example (2)

Resulting shortest-path tree from u:

Resulting forwarding table in u:

destination	link
V	(u,v)
X	(u,x)
У	(u,x)
W	(u,x)
Z	(u,x)

- r 4.1 Introduction
- r 4.2 Virtual circuit and datagram networks
- r 4.3 What's inside a router
- r 4.4 IP: Internet Protocol
 - m Datagram format
 - m IPv4 addressing
 - m ICMP
 - m IPv6

- r 4.5 Routing algorithms
 - m Link state
 - m Distance Vector
 - m Hierarchical routing
- r 4.6 Routing in the Internet
 - m RIP
 - m OSPF
 - m BGP
- r 4.7 Broadcast and multicast routing

Distance Vector Algorithm

Bellman-Ford Equation (dynamic programming)

Define

 $d_x(y) := cost of least-cost path from x to y$

Then

$$d_{x}(y) = \min_{v} \{c(x,v) + d_{v}(y)\}$$

where min is taken over all neighbors v of x

Bellman-Ford example

Clearly,
$$d_v(z) = 5$$
, $d_x(z) = 3$, $d_w(z) = 3$

B-F equation says:

$$d_{u}(z) = min \{ c(u,v) + d_{v}(z), c(u,x) + d_{x}(z), c(u,w) + d_{w}(z) \}$$

$$= min \{2 + 5, 1 + 3, 5 + 3\} = 4$$

Node that achieves minimum is next hop in shortest path → forwarding table

Distance Vector Algorithm

- $D_{x}(y) = estimate of least cost from x to y$
- r Node x knows cost to each neighbor v: c(x,v)
- r Node x maintains distance vector $D_x = [D_x(y): y \in N]$
- r Node x also maintains its neighbors' distance vectors
 - m For each neighbor v, x maintains $D_v = [D_v(y): y \in N]$

Distance vector algorithm (4)

Basic idea:

- r From time-to-time, each node sends its own distance vector estimate to neighbors
- r Asynchronous
- r When a node x receives new DV estimate from neighbor, it updates its own DV using B-F equation:

$$D_x(y) \leftarrow \min_{v} \{c(x,v) + D_v(y)\}$$
 for each node $y \in N$

The Under minor, natural conditions, the estimate $D_x(y)$ converge to the actual least cost $d_x(y)$

 $D_x(z) = \min\{c(x,y) + D_y(z), c(x,z) + D_z(z)\}$ = min{2+1, 7+0} = 3

time

$$D_{x}(y) = \min\{c(x,y) + D_{y}(y), c(x,z) + D_{z}(y)\}$$

$$= \min\{2+0, 7+1\} = 2$$

$$0 \text{ and } x \text{ table}$$

$$cost to cost to co$$

- r 4.1 Introduction
- r 4.2 Virtual circuit and datagram networks
- r 4.3 What's inside a router
- r 4.4 IP: Internet Protocol
 - m Datagram format
 - m IPv4 addressing
 - m ICMP
 - m IPv6

- r 4.5 Routing algorithms
 - m Link state
 - m Distance Vector
 - m Hierarchical routing
- r 4.6 Routing in the Internet
 - m RIP
 - m OSPF
 - m BGP
- r 4.7 Broadcast and multicast routing

Hierarchical Routing

Our routing study thus far - idealization

- r all routers identical
- r network "flat"
- ... not true in practice

scale: with 200 million destinations:

- r can't store all dest's in routing tables!
- r routing table exchange would swamp links!

administrative autonomy

- r internet = network of networks
- r each network admin may want to control routing in its own network

Hierarchical Routing

- r aggregate routers into regions, "autonomous systems" (AS)
- r routers in same AS run same routing protocol
 - m "intra-AS" routing protocol
 - m routers in different AS can run different intra-AS routing protocol

Gateway router

Direct link to router in another AS

Inter-AS tasks

- r suppose router in AS1 receives datagram destined outside of AS1:
 - m router should forward packet to gateway router, but which one?

AS1 must:

- learn which dests are reachable through AS2, which through AS3
- 2. propagate this reachability info to all routers in AS1

Job of inter-AS routing!

- r 4.1 Introduction
- r 4.2 Virtual circuit and datagram networks
- r 4.3 What's inside a router
- r 4.4 IP: Internet Protocol
 - m Datagram format
 - m IPv4 addressing
 - m ICMP
 - m IPv6

- r 4.5 Routing algorithms
 - m Link state
 - m Distance Vector
 - m Hierarchical routing
- r 4.6 Routing in the Internet
 - m RIP
 - m OSPF
 - m BGP
- r 4.7 Broadcast and multicast routing

Intra-AS Routing

- r also known as Interior Gateway Protocols (IGP)
- r most common Intra-AS routing protocols:
 - m RIP: Routing Information Protocol
 - m OSPF: Open Shortest Path First
 - m IGRP: Interior Gateway Routing Protocol (Cisco proprietary)

RIP (Routing Information Protocol)

- r distance vector algorithm
- r included in BSD-UNIX Distribution in 1982
- r distance metric: # of hops (max = 15 hops)

From router A to subnets:

<u>destination</u>	<u>hops</u>
u	1
V	2
W	2
×	3
У	3
Z	2

RIP advertisements

- r <u>distance vectors</u>: exchanged among neighbors every 30 sec via Response Message (also called advertisement)
- r each advertisement: list of up to 25 destination subnets within AS

RIP: Example

Destination Network	Next Router	Num. of hops to dest.
W	A	2
y	В	2
Z	В	7
×		1
····•	••••	• • • •

Routing/Forwarding table in D

RIP: Example

RIP: Link Failure and Recovery

- If no advertisement heard after 180 sec --> neighbor/link declared dead
 - m routes via neighbor invalidated
 - m new advertisements sent to neighbors
 - m neighbors in turn send out new advertisements (if tables changed)
 - m link failure info propagates quickly to entire net

- r 4.1 Introduction
- r 4.2 Virtual circuit and datagram networks
- r 4.3 What's inside a router
- r 4.4 IP: Internet Protocol
 - m Datagram format
 - m IPv4 addressing
 - m ICMP
 - m IPv6

- r 4.5 Routing algorithms
 - m Link state
 - m Distance Vector
 - m Hierarchical routing
- r 4.6 Routing in the Internet
 - m RIP
 - m OSPF
 - m BGP
- r 4.7 Broadcast and multicast routing

OSPF "advanced" features (not in RIP)

- r security: all OSPF messages authenticated (to prevent malicious intrusion)
- r multiple same-cost paths allowed (only one path in RIP)
- r integrated uni- and multicast support:
 - m Multicast OSPF (MOSPF) uses same topology data base as OSPF
- r hierarchical OSPF in large domains.

Hierarchical OSPF

Hierarchical OSPF

- r two-level hierarchy: local area, backbone.
 - m Link-state advertisements only in area
 - m each nodes has detailed area topology; only know direction (shortest path) to nets in other areas.
- r <u>area border routers:</u> "summarize" distances to nets in own area, advertise to other Area Border routers.
- r <u>backbone routers</u>: run OSPF routing limited to backbone.
- r boundary routers: connect to other A5's.

Chapter 4: Network Layer

- r 4.1 Introduction
- r 4.2 Virtual circuit and datagram networks
- r 4.3 What's inside a router
- r 4.4 IP: Internet Protocol
 - m Datagram format
 - m IPv4 addressing
 - m ICMP
 - m IPv6

- r 4.5 Routing algorithms
 - m Link state
 - m Distance Vector
 - m Hierarchical routing
- r 4.6 Routing in the Internet
 - m RIP
 - m OSPF
 - m BGP
- r 4.7 Broadcast and multicast routing

Internet inter-AS routing: BGP

- r BGP (Border Gateway Protocol): the de facto standard
- r BGP provides each AS a means to:
 - Obtain subnet reachability information from neighboring ASs.
 - 2. Propagate reachability information to all AS-internal routers.
 - 3. Determine "good" routes to subnets based on reachability information and policy.
- r allows subnet to advertise its existence to rest of Internet: "I am here"

BGP basics

- r pairs of routers (BGP peers) exchange routing info over semi-permanent TCP connections: BGP sessions
 - m BGP sessions need not correspond to physical links.
- r when AS2 advertises a prefix to AS1:
 - m AS2 promises it will forward datagrams towards that prefix.
 - m AS2 can aggregate prefixes in its advertisement

BGP route selection

- r router may learn about more than 1 route to some prefix. Router must select route.
- r elimination rules:
 - local preference value attribute: policy decision
 - 2. shortest AS-PATH
 - 3. closest NEXT-HOP router
 - 4. additional criteria

BGP routing policy

- r A,B,C are provider networks
- r X,W,Y are customer (of provider networks)
- r X is dual-homed: attached to two networks
 - m X does not want to route from B via X to C
 - m.. so X will not advertise to B a route to C

Chapter 4: Network Layer

- r 4.1 Introduction
- r 4.2 Virtual circuit and datagram networks
- r 4.3 What's inside a router
- r 4.4 IP: Internet Protocol
 - m Datagram format
 - m IPv4 addressing
 - m ICMP
 - m IPv6

- r 4.5 Routing algorithms
 - m Link state
 - m Distance Vector
 - m Hierarchical routing
- r 4.6 Routing in the Internet
 - m RIP
 - m OSPF
 - m BGP
- r 4.7 Broadcast and multicast routing

Broadcast Routing

- r deliver packets from source to all other nodes
- r source duplication is inefficient:

r source duplication: how does source determine recipient addresses?

Spanning Tree

- r First construct a spanning tree
- r Nodes forward copies only along spanning tree

(a) Broadcast initiated at A

(b) Broadcast initiated at D

Multicast Routing: Problem Statement

- r <u>Goal:</u> find a tree (or trees) connecting routers having local mcast group members
 - m tree: not all paths between routers used
 - m <u>source-based</u>: different tree from each sender to rcvrs
 - m *shared-tree:* same tree used by all group members

Shared tree

Source-based trees

Chapter 4: summary

- r 4.1 Introduction
- r 4.2 Virtual circuit and datagram networks
- r 4.3 What's inside a router
- r 4.4 IP: Internet Protocol
 - m Datagram format
 - m IPv4 addressing
 - m ICMP
 - m IPv6

- r 4.5 Routing algorithms
 - m Link state
 - m Distance Vector
 - m Hierarchical routing
- r 4.6 Routing in the Internet
 - m RIP
 - m OSPF
 - m BGP
- r 4.7 Broadcast and multicast routing