Chapter 4
Network Layer
Chapter 4: Network Layer

4.1 Introduction

4.2 Virtual circuit and datagram networks

4.3 What’s inside a router

4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing

4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP

4.7 Broadcast and multicast routing
Network layer

- network layer protocols in every host, router
- router examines header fields in all IP datagrams passing through it
Two Key Network-Layer Functions

- **forwarding**: move packets from router’s input to appropriate router output
- **routing**: determine route taken by packets from source to dest.

analogy:
- **routing**: process of planning trip from source to dest
- **forwarding**: process of getting through single interchange

routing algorithms
Interplay between routing and forwarding

Routing algorithm

Local forwarding table

<table>
<thead>
<tr>
<th>Header Value</th>
<th>Output Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100</td>
<td>3</td>
</tr>
<tr>
<td>0101</td>
<td>2</td>
</tr>
<tr>
<td>0111</td>
<td>2</td>
</tr>
<tr>
<td>1001</td>
<td>1</td>
</tr>
</tbody>
</table>

Value in arriving packet’s header
Chapter 4: Network Layer

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What’s inside a router
4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - IPv6
4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP
4.7 Broadcast and multicast routing
Network layer connection and connection-less service

- datagram network provides network-layer connectionless service
- VC network provides network-layer connection service
Virtual circuits

“source-to-dest path behaves much like telephone circuit”

- performance-wise
- network actions along source-to-dest path

- each packet carries VC identifier (not destination host address)
- every router on source-dest path maintains “state” for each passing connection
- link, router resources (bandwidth, buffers) may be allocated to VC (dedicated resources = predictable service)
Forwarding table

Forwarding table in northwest router:

<table>
<thead>
<tr>
<th>Incoming interface</th>
<th>Incoming VC #</th>
<th>Outgoing interface</th>
<th>Outgoing VC #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>3</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>63</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>97</td>
<td>3</td>
<td>87</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Routers maintain connection state information!
Virtual circuits: signaling protocols

- used in ATM, frame-relay, X.25
- not used in today’s Internet

1. Initiate call
2. incoming call
3. Accept call
4. Call connected
5. Data flow begins
6. Receive data
Datagram networks

- no call setup at network layer
- routers: no state about end-to-end connections
 - no network-level concept of “connection”
- packets forwarded using destination host address
 - packets between same source-dest pair may take different paths
Forwarding table

<table>
<thead>
<tr>
<th>Destination Address Range</th>
<th>Link Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>11001000 00010111 00010000 00000000 through 11001000 00010111 00010111 11111111</td>
<td>0</td>
</tr>
<tr>
<td>11001000 00010111 00011000 00000000 through 11001000 00010111 00011000 11111111</td>
<td>1</td>
</tr>
<tr>
<td>11001000 00010111 00011001 00000000 through 11001000 00010111 00011111 11111111</td>
<td>2</td>
</tr>
<tr>
<td>otherwise 11001000 00010111 00011001 00000000 through 11001000 00010111 00011111 11111111</td>
<td>3</td>
</tr>
</tbody>
</table>

4 billion possible entries
Longest prefix matching

<table>
<thead>
<tr>
<th>Prefix Match</th>
<th>Link Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>11001000 00010111 00010</td>
<td>0</td>
</tr>
<tr>
<td>11001000 00010111 00011000</td>
<td>1</td>
</tr>
<tr>
<td>11001000 00010111 00011</td>
<td>2</td>
</tr>
<tr>
<td>otherwise</td>
<td>3</td>
</tr>
</tbody>
</table>

Examples

DA: 11001000 00010111 00010110 [0110 10100001] Which interface?

DA: 11001000 00010111 00011000 [1000 10101010] Which interface?
Router Architecture Overview

Two key router functions:
- run routing algorithms/protocol (RIP, OSPF, BGP)
- forwarding datagrams from incoming to outgoing link
The Internet Network layer

Host, router network layer functions:

- **Routing protocols**
 - path selection
 - RIP, OSPF, BGP

- **IP protocol**
 - addressing conventions
 - datagram format
 - packet handling conventions

- **ICMP protocol**
 - error reporting
 - router "signaling"

Transport layer: TCP, UDP

Link layer

Physical layer
Chapter 4: Network Layer

4.1 Introduction

4.2 Virtual circuit and datagram networks

4.3 What’s inside a router

4.4 IP: Internet Protocol
 - **Datagram format**
 - **IPv4 addressing**
 - **ICMP**
 - **IPv6**

4.5 Routing algorithms
 - **Link state**
 - **Distance Vector**
 - **Hierarchical routing**

4.6 Routing in the Internet
 - **RIP**
 - **OSPF**
 - **BGP**

4.7 Broadcast and multicast routing
IP datagram format

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP protocol version</td>
<td>Number of the internet protocol version</td>
</tr>
<tr>
<td>header length</td>
<td>Length of the IP header (in bytes)</td>
</tr>
<tr>
<td>“type” of data</td>
<td>Protocol type, e.g., IPv4, IPv6</td>
</tr>
<tr>
<td>max number remaining</td>
<td>Maximum number of hops the packet can travel before being discarded</td>
</tr>
<tr>
<td>remaining hops</td>
<td>(Decrement at each router)</td>
</tr>
<tr>
<td>time to live</td>
<td>Time left for the packet to be received</td>
</tr>
<tr>
<td>upper layer</td>
<td>Protocol used to deliver the data to the destination</td>
</tr>
<tr>
<td>32 bit source IP address</td>
<td>Source IP address of the packet</td>
</tr>
<tr>
<td>32 bit destination IP address</td>
<td>Destination IP address of the packet</td>
</tr>
<tr>
<td>Options (if any)</td>
<td>Additional options for the packet</td>
</tr>
<tr>
<td>data</td>
<td>Payload data, typically a TCP or UDP segment</td>
</tr>
<tr>
<td>total datagram length</td>
<td>Total length of the datagram (in bytes)</td>
</tr>
<tr>
<td>for fragmentation/</td>
<td>Field used for fragmentation and reassembly</td>
</tr>
<tr>
<td>reassembly</td>
<td></td>
</tr>
</tbody>
</table>

Network Layer 4-19
IP Fragmentation & Reassembly

- network links have MTU (max.transfer size)
 - largest possible link-level frame.
- large IP datagram divided (“fragmented”) within net
 - one datagram becomes several datagrams
 - “reassembled” only at final destination
- IP header bits used to identify, order related fragments
IP Fragmentation and Reassembly

Example

- 4000 byte datagram
- MTU = 1500 bytes

1480 bytes in data field

offset = 1480/8

One large datagram becomes several smaller datagrams

- **4000 byte datagram**
 - ID = x
 - fragflag = 0
 - offset = 0

- **MTU = 1500 bytes**
 - ID = x
 - fragflag = 1
 - offset = 0

- **1480 bytes in data field**
 - offset = 1480/8

- **1500 bytes**
 - ID = x
 - fragflag = 1
 - offset = 185

- **1500 bytes**
 - ID = x
 - fragflag = 1
 - offset = 370

- **1040 bytes**
 - ID = x
 - fragflag = 0
 - offset = 370
Chapter 4: Network Layer

4.1 Introduction

4.2 Virtual circuit and datagram networks

4.3 What’s inside a router

4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing

4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP

4.7 Broadcast and multicast routing
IP Addressing: introduction

- **IP address**: 32-bit identifier for host, router *interface*

- **interface**: connection between host/router and physical link
 - router's typically have multiple interfaces
 - host typically has one interface
 - IP addresses associated with each interface

Example IP addresses and binary representation:

- 223.1.1.1 = 11011111 00000001 00000001 00000001
- 223.1.2.2 = 11010101 00000001 00000001 00000010
- 223.1.3.1 = 11010011 00000001 00000001 00000001
- 223.1.3.2 = 11010011 00000001 00000001 00000011
- 223.1.3.27 = 11010011 00000001 00000001 10000011

Network Layer 4-23
Subnets

- **IP address:**
 - Subnet part (high order bits)
 - Host part (low order bits)

- **What’s a subnet?**
 - Device interfaces with same subnet part of IP address
 - Can physically reach each other without intervening router

![Network diagram showing three subnets](image-url)
Subnets

To determine the subnets, detach each interface from its host or router, creating islands of isolated networks. Each isolated network is called a subnet.

Subnet mask: /24
Subnets

How many?
IP addressing: CIDR

CIDR: Classless InterDomain Routing

- subnet portion of address of arbitrary length
- address format: \texttt{a.b.c.d/x}, where \(x \) is \# bits in subnet portion of address

\[
\begin{array}{c}
11001000 \\
00010111 \\
00010000 \\
00000000
\end{array}
\]

200.23.16.0/23
IP addresses: how to get one?

Q: How does a host get IP address?

- hard-coded by system admin in a file
 - Windows: control-panel->network->configuration->tcp/ip->properties
 - UNIX: /etc/rc.config
- DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server
 - “plug-and-play”
DHCP: Dynamic Host Configuration Protocol

Goal: allow host to *dynamically* obtain its IP address from network server when it joins network

- Allows reuse of addresses
DHCP client-server scenario

DHCP server: 223.1.2.5

DHCP discover
src: 0.0.0.0, 68
dest: 255.255.255.255, 67
yiaddr: 0.0.0.0
transaction ID: 654

DHCP offer
src: 223.1.2.5, 67
dest: 255.255.255.255, 68
yiaddr: 223.1.2.4
transaction ID: 654
Lifetime: 3600 secs

DHCP request
src: 0.0.0.0, 68
dest: 255.255.255.255, 67
yiaddr: 223.1.2.4
transaction ID: 655
Lifetime: 3600 secs

DHCP ACK
src: 223.1.2.5, 67
dest: 255.255.255.255, 68
yiaddr: 223.1.2.4
transaction ID: 655
Lifetime: 3600 secs
IP addresses: how to get one?

Q: How does network get subnet part of IP addr?

A: gets allocated portion of its provider ISP’s address space
IP addresses: how to get one?

Q: How does network get subnet part of IP addr?

A: gets allocated portion of its provider ISP’s address space

<table>
<thead>
<tr>
<th>ISP's block</th>
<th>11001000 00010111 00010000 00000000</th>
<th>200.23.16.0/20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization 0</td>
<td>11001000 00010111 00010000 00000000</td>
<td>200.23.16.0/23</td>
</tr>
<tr>
<td>Organization 1</td>
<td>11001000 00010111 00010010 00000000</td>
<td>200.23.18.0/23</td>
</tr>
<tr>
<td>Organization 2</td>
<td>11001000 00010111 00010100 00000000</td>
<td>200.23.20.0/23</td>
</tr>
<tr>
<td>...</td>
<td>.....</td>
<td>.....</td>
</tr>
<tr>
<td>Organization 7</td>
<td>11001000 00010111 00011110 00000000</td>
<td>200.23.30.0/23</td>
</tr>
</tbody>
</table>
Hierarchical addressing allows efficient advertisement of routing information:

- **Organization 0**: 200.23.16.0/23
- **Organization 1**: 200.23.18.0/23
- **Organization 2**: 200.23.20.0/23
- **Organization 7**: 200.23.30.0/23

Fly-By-Night-ISP

```
“Send me anything with addresses beginning 200.23.16.0/20”
```

ISPs-R-Us

```
“Send me anything with addresses beginning 199.31.0.0/16”
```

Internet
Hierarchical addressing: more specific routes

ISPs-R-Us has a more specific route to Organization 1

- Organization 0
 - 200.23.16.0/23

- Organization 2
 - 200.23.20.0/23

- Organization 7
 - 200.23.30.0/23

- Organization 1
 - 200.23.18.0/23

ISPs-R-Us

- “Send me anything with addresses beginning 199.31.0.0/16 or 200.23.18.0/23”

Fly-By-Night-ISP

- “Send me anything with addresses beginning 200.23.16.0/20”

Internet
NAT: Network Address Translation

All datagrams **leaving** local network have **same** single source NAT IP address: 138.76.29.7, different source port numbers

Datagrams with source or destination in this network have 10.0.0/24 address for source, destination (as usual)
NAT: Network Address Translation

- **Motivation:** local network uses just one IP address as far as outside world is concerned:
 - range of addresses not needed from ISP: just one IP address for all devices
 - can change addresses of devices in local network without notifying outside world
 - can change ISP without changing addresses of devices in local network
 - devices inside local net not explicitly addressable, visible by outside world (a security plus).
NAT: Network Address Translation

1: host 10.0.0.1 sends datagram to 128.119.40.186, 80

2: NAT router changes datagram source addr from 10.0.0.1, 3345 to 138.76.29.7, 5001, updates table

S: 138.76.29.7, 5001
D: 128.119.40.186, 80

3: Reply arrives dest. address: 138.76.29.7, 5001

S: 128.119.40.186, 80
D: 10.0.0.1, 3345

4: NAT router changes datagram dest addr from 138.76.29.7, 5001 to 10.0.0.1, 3345
Chapter 4: Network Layer

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What’s inside a router
4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - IPv6
4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP
4.7 Broadcast and multicast routing
ICMP: Internet Control Message Protocol

- used by hosts & routers to communicate network-level information
- error reporting: unreachable host, network, port, protocol
- echo request/reply (used by ping)

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>echo reply (ping)</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>dest. network unreachable</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>dest host unreachable</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>dest protocol unreachable</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>dest port unreachable</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>dest network unknown</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>dest host unknown</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>source quench (congestion control - not used)</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>echo request (ping)</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>route advertisement</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>router discovery</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>TTL expired</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>bad IP header</td>
</tr>
</tbody>
</table>
Chapter 4: Network Layer

- 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What’s inside a router
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - IPv6
- 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Broadcast and multicast routing
IPv6

- Initial motivation: 32-bit address space soon to be completely allocated.
- Additional motivation:
 - Header format helps speed processing/forwarding
 - Header changes to facilitate QoS

IPv6 datagram format:
- Fixed-length 40 byte header
- No fragmentation allowed
IPv6 Header (Cont)

Priority: identify priority among datagrams in flow

Flow Label: identify datagrams in same “flow.”
(concept of “flow” not well defined).

Next header: identify upper layer protocol for data

![IPv6 Header Diagram]

<table>
<thead>
<tr>
<th>ver</th>
<th>pri</th>
<th>flow label</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>payload len</th>
<th>next hdr</th>
<th>hop limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

source address
(128 bits)

destination address
(128 bits)

data

32 bits
Transition From IPv4 To IPv6

- Not all routers can be upgraded simultaneously
 - no "flag days"
 - How will the network operate with mixed IPv4 and IPv6 routers?

- **Tunneling**: IPv6 carried as payload in IPv4 datagram among IPv4 routers
Chapter 4: Network Layer

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What’s inside a router
4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - IPv6
4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP
4.7 Broadcast and multicast routing
Interplay between routing, forwarding

Routing algorithm

Local Forwarding Table

<table>
<thead>
<tr>
<th>Header Value</th>
<th>Output Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100</td>
<td>3</td>
</tr>
<tr>
<td>0101</td>
<td>2</td>
</tr>
<tr>
<td>0111</td>
<td>2</td>
</tr>
<tr>
<td>1001</td>
<td>1</td>
</tr>
</tbody>
</table>

Value in arriving packet’s header

Network Layer 4-46
Graph abstraction

Graph: \(G = (N,E) \)

\(N = \) set of routers = \{ u, v, w, x, y, z \}

\(E = \) set of links =\{ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) \}

Remark: Graph abstraction is useful in other network contexts

Example: P2P, where \(N \) is set of peers and \(E \) is set of TCP connections
Graph abstraction: costs

- \(c(x,x') \) = cost of link \((x,x') \)
 - e.g., \(c(w,z) = 5 \)
- cost could always be 1, or inversely related to bandwidth, or inversely related to congestion

Cost of path \((x_1, x_2, x_3, \ldots, x_p) = c(x_1,x_2) + c(x_2,x_3) + \ldots + c(x_{p-1},x_p) \)

Question: What's the least-cost path between \(u \) and \(z \)?

Routing algorithm: algorithm that finds least-cost path
Routing Algorithm classification

Global or decentralized information?

Global:
- all routers have complete topology, link cost info
- “link state” algorithms

Decentralized:
- router knows physically-connected neighbors, link costs to neighbors
- iterative process of computation, exchange of info with neighbors
- “distance vector” algorithms

Static or dynamic?

Static:
- routes change slowly over time

Dynamic:
- routes change more quickly
 - periodic update
 - in response to link cost changes
Chapter 4: Network Layer

- 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What’s inside a router
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - IPv6
- 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Broadcast and multicast routing
A Link-State Routing Algorithm

Dijkstra’s algorithm

- net topology, link costs known to all nodes
 - accomplished via “link state broadcast”
 - all nodes have same info
- computes least cost paths from one node (‘source”) to all other nodes
 - gives forwarding table for that node
- iterative: after k iterations, know least cost path to k dest.’s

Notation:

- \(c(x,y) \): link cost from node \(x \) to \(y \); \(= \infty \) if not direct neighbors
- \(D(v) \): current value of cost of path from source to dest. \(v \)
- \(p(v) \): predecessor node along path from source to \(v \)
- \(N' \): set of nodes whose least cost path definitively known
Dijsktra’s Algorithm

1. **Initialization:**
 2. \(N' = \{u\} \)
 3. for all nodes \(v \)
 4. if \(v \) adjacent to \(u \)
 5. then \(D(v) = c(u,v) \)
 6. else \(D(v) = \infty \)

7. **Loop**
 8. find \(w \) not in \(N' \) such that \(D(w) \) is a minimum
 9. add \(w \) to \(N' \)
 10. update \(D(v) \) for all \(v \) adjacent to \(w \) and not in \(N' \) :
 \[
 D(v) = \min(D(v), D(w) + c(w,v))
 \]
 11. /* new cost to \(v \) is either old cost to \(v \) or known
 12. shortest path cost to \(w \) plus cost from \(w \) to \(v \) */
 13. until all nodes in \(N' \)
Dijkstra’s algorithm: example

<table>
<thead>
<tr>
<th>Step</th>
<th>N'</th>
<th>D(v),p(v)</th>
<th>D(w),p(w)</th>
<th>D(x),p(x)</th>
<th>D(y),p(y)</th>
<th>D(z),p(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>u</td>
<td>2,u</td>
<td>5,u</td>
<td>1,u</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>ux</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The network diagram represents the connections and the steps involved in the algorithm. The table shows the updated distances and predecessors at each step.
Dijkstra’s algorithm: example

<table>
<thead>
<tr>
<th>Step</th>
<th>N'</th>
<th>D(v),p(v)</th>
<th>D(w),p(w)</th>
<th>D(x),p(x)</th>
<th>D(y),p(y)</th>
<th>D(z),p(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>u</td>
<td>2,u</td>
<td>5,u</td>
<td>1,u</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>ux</td>
<td>2,u</td>
<td>4,x</td>
<td>2,x</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>2</td>
<td>uxy</td>
<td>2,u</td>
<td>3,y</td>
<td>4,y</td>
<td>4,y</td>
<td>4,y</td>
</tr>
<tr>
<td>3</td>
<td>uxyv</td>
<td>2,u</td>
<td>3,y</td>
<td>4,y</td>
<td>4,y</td>
<td>4,y</td>
</tr>
<tr>
<td>4</td>
<td>uxyvw</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>uxyvzw</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Graph representation:

![Graph](image)
Dijkstra’s algorithm: example (2)

Resulting shortest-path tree from u:

Resulting forwarding table in u:

<table>
<thead>
<tr>
<th>destination</th>
<th>link</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>(u,v)</td>
</tr>
<tr>
<td>x</td>
<td>(u,x)</td>
</tr>
<tr>
<td>y</td>
<td>(u,x)</td>
</tr>
<tr>
<td>w</td>
<td>(u,x)</td>
</tr>
<tr>
<td>z</td>
<td>(u,x)</td>
</tr>
</tbody>
</table>
Chapter 4: Network Layer

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What’s inside a router
4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - IPv6
4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP
4.7 Broadcast and multicast routing
Distance Vector Algorithm

Bellman-Ford Equation (dynamic programming)

Define
\[d_x(y) := \text{cost of least-cost path from } x \text{ to } y \]

Then
\[d_x(y) = \min_v \{ c(x,v) + d_v(y) \} \]

where \(\min \) is taken over all neighbors \(v \) of \(x \)
Bellman-Ford example

Clearly, $d_v(z) = 5$, $d_x(z) = 3$, $d_w(z) = 3$

B-F equation says:

$$d_u(z) = \min \{ c(u,v) + d_v(z),
 c(u,x) + d_x(z),
 c(u,w) + d_w(z) \}$$

$$= \min \{2 + 5, 1 + 3, 5 + 3\} = 4$$

Node that achieves minimum is next hop in shortest path ➔ forwarding table
Distance Vector Algorithm

- $D_x(y) = \text{estimate of least cost from } x \text{ to } y$
- Node x knows cost to each neighbor v: $c(x,v)$
- Node x maintains distance vector $D_x = [D_x(y) : y \in N]$
- Node x also maintains its neighbors’ distance vectors
 - For each neighbor v, x maintains $D_v = [D_v(y) : y \in N]$
Distance vector algorithm (4)

Basic idea:

- From time-to-time, each node sends its own distance vector estimate to neighbors.
- Asynchronous.
- When a node x receives new DV estimate from neighbor, it updates its own DV using B-F equation:
 $$D_x(y) \leftarrow \min_v \{c(x,v) + D_v(y)\} \quad \text{for each node } y \in N$$
- Under minor, natural conditions, the estimate $D_x(y)$ converge to the actual least cost $d_x(y)$.
\[D_x(y) = \min\{c(x,y) + D_y(y), c(x,z) + D_z(y)\} \]
\[= \min\{2+0, 7+1\} = 2 \]

\[D_x(z) = \min\{c(x,y) + D_y(z), c(x,z) + D_z(z)\} \]
\[= \min\{2+1, 7+0\} = 3 \]
\[D_x(y) = \min\{c(x,y) + D_y(y), c(x,z) + D_z(y)\} = \min\{2+0, 7+1\} = 2 \]

\[D_x(z) = \min\{c(x,y) + D_y(z), c(x,z) + D_z(z)\} = \min\{2+1, 7+0\} = 3 \]
Chapter 4: Network Layer

4.1 Introduction

4.2 Virtual circuit and datagram networks

4.3 What’s inside a router

4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing

4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP

4.7 Broadcast and multicast routing
Hierarchical Routing

Our routing study thus far - idealization
- all routers identical
- network “flat”

... not true in practice

scale: with 200 million destinations:
- can’t store all dest’s in routing tables!
- routing table exchange would swamp links!

administrative autonomy
- internet = network of networks
- each network admin may want to control routing in its own network
Hierarchical Routing

- aggregate routers into regions, “autonomous systems” (AS)
- routers in same AS run same routing protocol
 - “intra-AS” routing protocol
 - routers in different AS can run different intra-AS routing protocol
- Gateway router
 - Direct link to router in another AS
Inter-AS tasks

- Suppose router in AS1 receives datagram destined outside of AS1:
 - Router should forward packet to gateway router, but which one?

AS1 must:
1. Learn which dests are reachable through AS2, which through AS3
2. Propagate this reachability info to all routers in AS1

Job of inter-AS routing!
Chapter 4: Network Layer

4.1 Introduction

4.2 Virtual circuit and datagram networks

4.3 What’s inside a router

4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing

4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP

4.7 Broadcast and multicast routing
Intra-AS Routing

- also known as *Interior Gateway Protocols (IGP)*
- most common Intra-AS routing protocols:
 - RIP: Routing Information Protocol
 - OSPF: Open Shortest Path First
 - IGRP: Interior Gateway Routing Protocol (Cisco proprietary)
RIP (Routing Information Protocol)

- distance vector algorithm
- included in BSD-UNIX Distribution in 1982
- distance metric: # of hops (max = 15 hops)

From router A to subnets:

<table>
<thead>
<tr>
<th>destination</th>
<th>hops</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>1</td>
</tr>
<tr>
<td>v</td>
<td>2</td>
</tr>
<tr>
<td>w</td>
<td>2</td>
</tr>
<tr>
<td>x</td>
<td>3</td>
</tr>
<tr>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>z</td>
<td>2</td>
</tr>
</tbody>
</table>
RIP advertisements

- *distance vectors*: exchanged among neighbors every 30 sec via Response Message (also called *advertisement*)

- each advertisement: list of up to 25 destination subnets within AS
RIP: Example

<table>
<thead>
<tr>
<th>Destination Network</th>
<th>Next Router</th>
<th>Num. of hops to dest.</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>y</td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>z</td>
<td>B</td>
<td>7</td>
</tr>
<tr>
<td>x</td>
<td>--</td>
<td>1</td>
</tr>
<tr>
<td>....</td>
<td>....</td>
<td>....</td>
</tr>
</tbody>
</table>

Routing/Forwarding table in D
RIP: Example

<table>
<thead>
<tr>
<th>Dest</th>
<th>Next</th>
<th>hops</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>x</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>z</td>
<td>B A</td>
<td>7 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Routing/Forwarding table in D

Advertisement from A to D

Destination Network	Next Router	Num. of hops to dest.
 w | A | 2 |
 y | B | 2 |
 z | B A | 7 5 |
 x | -- | 1 |
 | | |

Network Layer 4-73
RIP: Link Failure and Recovery

If no advertisement heard after 180 sec -->
neighbor/link declared dead
 m routes via neighbor invalidated
 m new advertisements sent to neighbors
 m neighbors in turn send out new advertisements (if
tables changed)
 m link failure info propagates quickly to entire net
Chapter 4: Network Layer

- 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What’s inside a router
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - IPv6
- 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Broadcast and multicast routing
OSPF “advanced” features (not in RIP)

- **security**: all OSPF messages authenticated (to prevent malicious intrusion)
- **multiple same-cost paths** allowed (only one path in RIP)
- integrated uni- and **multicast** support:
 - **Multicast OSPF (MOSPF)** uses same topology database as OSPF
- **hierarchical** OSPF in large domains.
Hierarchical OSPF
Hierarchical OSPF

- **two-level hierarchy**: local area, backbone.
 - Link-state advertisements only in area
 - Each node has detailed area topology; only know direction (shortest path) to nets in other areas.

- **area border routers**: “summarize” distances to nets in own area, advertise to other Area Border routers.

- **backbone routers**: run OSPF routing limited to backbone.

- **boundary routers**: connect to other AS’s.
Chapter 4: Network Layer

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What’s inside a router
4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - IPv6
4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP
4.7 Broadcast and multicast routing
Internet inter-AS routing: BGP

- BGP (Border Gateway Protocol): the de facto standard
- BGP provides each AS a means to:
 1. Obtain subnet reachability information from neighboring ASs.
 2. Propagate reachability information to all AS-internal routers.
 3. Determine “good” routes to subnets based on reachability information and policy.
- Allows subnet to advertise its existence to rest of Internet: “I am here”
BGP basics

- pairs of routers (BGP peers) exchange routing info over semi-permanent TCP connections: **BGP sessions**
 - BGP sessions need not correspond to physical links.

- when AS2 advertises a prefix to AS1:
 - AS2 *promises* it will forward datagrams towards that prefix.
 - AS2 can aggregate prefixes in its advertisement
BGP route selection

- router may learn about more than 1 route to some prefix. Router must select route.
- elimination rules:
 1. local preference value attribute: policy decision
 2. shortest AS-PATH
 3. closest NEXT-HOP router
 4. additional criteria
BGP routing policy

- **A, B, C** are provider networks
- **X, W, Y** are customer (of provider networks)
- **X** is *dual-homed*: attached to two networks
 - X does not want to route from B via X to C
 - .. so X will not advertise to B a route to C
Chapter 4: Network Layer

4.1 Introduction

4.2 Virtual circuit and datagram networks

4.3 What’s inside a router

4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing

4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP

4.7 Broadcast and multicast routing
Broadcast Routing

- deliver packets from source to all other nodes

- source duplication is inefficient:

 - source duplication: how does source determine recipient addresses?
Spanning Tree

- First construct a spanning tree
- Nodes forward copies only along spanning tree

(a) Broadcast initiated at A
(b) Broadcast initiated at D
Multicast Routing: Problem Statement

Goal: find a tree (or trees) connecting routers having local mcast group members

- **tree:** not all paths between routers used
- **source-based:** different tree from each sender to rcvrs
- **shared-tree:** same tree used by all group members

![Shared tree](image1)

![Source-based trees](image2)

Shared tree

Source-based trees
Chapter 4: summary

r 4.1 Introduction
r 4.2 Virtual circuit and datagram networks
r 4.3 What’s inside a router
r 4.4 IP: Internet Protocol
 m Datagram format
 m IPv4 addressing
 m ICMP
 m IPv6
r 4.5 Routing algorithms
 m Link state
 m Distance Vector
 m Hierarchical routing
r 4.6 Routing in the Internet
 m RIP
 m OSPF
 m BGP
r 4.7 Broadcast and multicast routing