The Production Cell Assignment

Modeling and Verifying a Real-
Time System using Uppaal

Assignment in DatorSystem IT - RealTid m)
Fall 200-

Lab Assistant

name: Therese Berg
email: thereseb@it.uu.se
room: 1438

postbox: 67 (4th floor, building 1)

Introduction

The purpose of this lab is to give students an introduction to formal methods and model
checking by modeling and verifying an industrial Production Cell application using Uppaal.

The assignment should be solved individually or in groups of two.

The Production Cell

The Production Cell case study [2, 4] is an attempt to define a realistic industrial application.
It has been described in many formalisms, but the original specification of it doesn’t contain
any temporal issues. In this assignment we will use Uppaal [1, 3, 5] to model and verify some
properties of the Production Cell.

deposit belt
amB
robot
press
amA
sensor
[]
_ s e e
feed belt

Figure 1: Production Cell

The Production Cell is intended to be a part of an industrial installation. Its purpose is to
take metal plates from the feed belt, move them to the press, let the press do its work and
then move the plates to a deposit belt. Plates are moved on the belts and by a robot. The

components of the system are shown in Figure 1. Arm A of the robot takes plate from the
table (which itself must twist and rise when it gets a plate from the belt) and places the plate
on the press. When the plate has been pressed, Arm B of the robot carries the plate to the
deposit belt.

The arms of the robot are fixed with respect to each other (i.e. 90 degrees), so the robot
controller must coordinate its operations of the two arms. The arms can also move horizontally
(back and forth) but cannot move up or down. Instead the table and the press can move
up and down and the belts are on different levels. You are not required to treat all of these
movements in detail.

As all actions in the Production Cell take time it will be necessary to communicate to the
robot that a plate has arrived at the Cell. This is achieved by means of a sensor.

The simplification in this model, compared with the original model, is the removal of a
crane which moves plates from the deposit belt back to feed belt (it was an artificial element
to produce a closed system). Instead of this we capture the continuous stream of plates by
modeling a fixed number of plates circulating around the system, i.e. after leaving the deposit
belt they become available for the feed belt again.

A

) Arm A at table (b) Arm B at press) Arm A at press (d) Arm B at deposit

Figure 2: Robot positions

Robot Movements

When a plate is moved from the Feed Belt to the table the table must be in its lowest position.
The table then rises to a level where arm A can pick up the plate. The robot movements are
then as follows (see Figure 2):

arm A at table - Arm A extends and pick up the plate from the table, see Figure 2(a).

arm B at press - The robot rotates counterclockwise until arm B points towards the press.
Arm B is extended until it reaches the press. Arm B picks up the forged plate and
retracts, see Figure 2(b).

arm A at press - The robot rotates counterclockwise until arm A can reach the press. Arm
A extends, deposits its plate, and retracts again, see Figure 2(c).

arm B at deposit - The robot rotates counterclockwise until arm B points towards the de-
posit belt. Arm B extends and places the forged plate on the belt, see Figure 2(d).

When there is little to do for the robot it can move to a wait-position whose position is lo-
cated somewhere between the arm A at table-position and arm B at press-position. The
decision procedure for deciding on when to go to the wait-position is something you have to
implement.

Device ‘ Action ‘ Time Units ‘

Feed belt Move to sensor 3
Feed belt Move to table 1
Table Raise and twist 2
Table Return and twist 2
Press Press plate 22-25
Press Prepare for new plate 18-20
‘ Deposit belt ‘ Move plate out of cell 4 ‘
Robot Arm A at table to Arm B at press 5
Robot Arm B at press to Arm A at press 15
Robot Arm A at press to Arm B at deposit 5
Robot Arm B at deposit to Arm A at table 25
Robot Arm B at deposit to Wait position 25 - X
Robot Arm A at press to Wait position 20 - X
Robot Wait position to Arm A at table X
Robot Wait position to Arm B at press 5-X
Robot At Wait position 2

Figure 3: Temporal values of Production Cell Activities

Temporal Parameters

In a realistic model all actions take time. Some operations take fixed time and other actions
have maximum and minimum time bounds. The values which will be used in the study are
given in the table in Figure 3. Actual time values are not significant, hence values are given
in time units. From the table we can e.g. see that it takes the robot five time units to move
from the arm A at table-position to the arm B at press-position.

The press requires some time to prepare for a new plate. The times for pressing and preparing
for a new plate are not fixed but will vary.

To simplify the model we assume that all taking and leaving of plates are instantaneous,
i.e. they will take no time to perform. Instead it is the movement between states, where
plates can be taken and leaved, which takes time.

The movements given in Figure 3 are the only movements that the robot can perform, e.g.
it is not possible to go from the Arm A at press-position directly to the Arm B at press-
position. Also, no movement can be stopped or reversed, i.e. if a robot starts to move from
one position to another it must move all the way and cannot stop on the way.

The X-value introduces some variability in the model and allow you to investigate the best
location for the Wait-position. By changing the value of X we can change the location of
the Wait-position. For example, if we want the Wait-position close to the arm A at table-
position then X should be small. To make sure that the robot doesn’t interfere with the rest
of the devices when in Wait-position the possible values of X are limited to: 1 < X < 4.

Modeling the Production Cell

Start by open the model of the system that you can find on:
/stud/docs/kurs/realtid/production cell/

in Uppaal 2k. All different objects of the system are modeled as separate processes in Uppaal.
The feeding belt, the sensor, the table, the robot, the press, the deposit belt and one or more
plate processes. Of these all but the robot are given. Your task is to model a robot process
and include it in the system so that the overall requirements are fulfilled.

Open the model of the system in the simulator, study what happens when you step through
it. The already given parts of the system allows you to see how a plate moves on the feed belt
to the table. But there it stops since there are no robot process there to handle it. Verify
that the system will finally get stucked by stepping through the system using the simulator.

Study what channels the different given parts of the cell uses, what integer variables are
declared. Your robot model will need local variables, e.g. to model that an arm has a plate
or that there is a plate in the press, but you do not need to change any of the other models
in the system. You might have to restrict some movements so they are not possible unless
some specific properties, e.g. that Arm B must be holding a plate, are fulfilled.

The channels calls your robot will use for synchronization are:

- plate_taken? - to take a plate to Arm A from table.

- get? - to leave a plate from Arm A to press.

- take? - to get a pressed plate from the press to Arm B.

- put? - to put a plate from Arm B on deposit belt.

- read! - to get tell the Sensor that the robot is ready for getting a new plate.

Observe that all channels are declared urgent. This means that the transition must be taken
immediately if both participating automata are ready for the synchronization (and all other
guards are fulfilled). Observe that it is not allowed to have clock guards on synchronization
transitions.

OnFeed EndFeed mv2? OnTable

mv1?

O
H

mv3?

OnRobot2 OnPress g Robot1
() 5
mvs? O mwa?

Figure 4: Template for the Plate Process

An Example

A template for the circulating plate process is shown in Figure 4. Create is an initial state.
Process in the whole model is made by communicating on urgent channels. Note, that the
plate is a passive component of the system, it only circulates in it, so it cannot force the

progress. Because of this, each plate has only a single local clock, that is used for checking
the bounded liveness. The meanings of the (urgent) synchronization channels for this Finite
State Machine (FSM) are as follows:

add is linked to FSM representing the feed belt, by this channel the plate moves to the
state OnFeed.

mvl - moving the plate to the end of the feed belt.
mv2 - plate movement to the table.

mv3 - from the table to the robot (the Arm A).
mv4 - by the arm A to the press.

mv5 - from the press to the robot (the Arm B).
final - to the deposit belt.

Observe that the plate never will synchronize with the Robot directly but only with the other
devices in the system.

Modelling Tips

Some tips for doing the modelling in Uppaal are:

If you want to model that certain amount of time should pass, for example for going
between the Arm_A_at_Table- and Arm_B_at_Press-position, you do it most easily by
creating a new state, say A_Table_to_B_Press, which symbolize the transition. Let the
in-arrow to the transition-state reset a clock, say ¢:=0, which will be used to constrain
the time we could stay in the state. By setting a guard on how long we can stay in the
transition-state, c<=5, and a guard on the out-arrow on when we can leave the state,
c==5, we can make sure that the transition lasts for exactly 5 time units, see Figure 5.

A Table to B Press
c:=0 \/—\ c==
|

c<=b

Figure 5: Time passage

Since the robot can arrive to a state before the corresponding device it shall synchro-
nize with is ready, you might sometimes have to model that the robot are at the
same position, but in two different states. See for example Figure 6 where the Arm
B at Deposit-position has been divided into two states, Arm B_at Deposit_Wait and
Arm B_at Deposit, since the Robot can’t deliver the plate until the Deposit Belt is
ready for receiving it.

Arm_B_at_Deposit_Wait Arm_B_at_Deposit

=N put? I/
— K/\

Figure 6: Waiting state

e To guarantee progress in your model you might have to set some states as urgent. This

tells Uppaal that the Robot is not allowed to stay in that state and must therefore
immidiately leave it.

Requirements for the Model

After you have constructed the Robot FSM it is time to verify some properties of the system.
For this you will be using the verifier part of the Uppaal tool. You can give a question about
some property of your system to the verifier, and if the analysis shows that it is not fulfilled
you can step through a generated counterexample in the simulator.

A verification of a system implementation involves predicting the temporal worst-case be-
havior of the system when all delays are accounted for, and the subsequent assertion that in
such circumstances all deadlines are satisfied. For each model we could make sure that two
properties are satisfied: safety of the model (i.e. it must be possible to show that undesirable
state cannot be reached from any legal initial conditions) and bounded liveness of the model
(i.e. it can be asserted that all deadlines are feasible).

To capture the continuous stream of plates a fixed number of plates should be modeled as
circulating around the system, i.e.:

- After leaving the Deposit Belt the plates become available for the Feed Belt again.
- There is a maximum of only one plate on the Feed Belt at a time.

What You Should Verify

The following properties should be verified (and answers given for) your Production Cell
model:

1. That your system is deadlock free. Currently there is no support for deadlock checking
available using Uppaal’s graphical interface!, instead we have to use Uppaal’s stand-
alone verifier verifyta. The procedure for doing deadlock checks are as follows:

i. Use the Export As.. option in the File menu to generate a .ta-file of your
system, e.g. MyProdCellModel. ta.

ii. Create a question that will make the verifier to investigate the whole search space,
for example: A[] (1 == 1) (which asks if it is always true, for every possible
execution, that 1 is equal to 1). Create the question in the verifier and save it in
a file, e.g. MyDeadlockQuestion.q.

iii. Call verifyta in a shell with an option that display (deadlock) warnings as
queries?, and save the generated warnings in a file, e.g. MyDeadlockWarnings.q:
verifyta -Q MyProdCellModel.ta MyDeadlockQuestion.q > MyDeadlockWarnings.q

iv. Check if you got any deadlocks by investigating the generated file MyDeadlock-
Warnings.q. The easiest way to do this is to open the query file in Uppaal’s
graphical interface. If you got deadlocks in your system you will have (a number of
queries) looking e.g. like E<> (P1.0nPress and ...). You can now, by pushing
the Model Check button generate a trace for the deadlock which you can step
through in the simulator. To generate traces make sure that you have the checked
the Diagnostic Trace box in the Options menu.

Validate that your system is deadlock free both for one as well as several number of
plates (see below).

'The Uppaal gang has promised to add deadlock checking in their next version of Uppaal :)
’Run verifyta without any options to get a listing of the features it support.

2. That the worst-case time for a plate from arrival on the feed belt to removal from the
deposit belt must be less than 300 time units. This temporal requirements on the Cell
concern the end-to-end movement of any plate. This is a deadline for the model and
hence represents a bounded liveness property to be verified. In Uppaal this can verified
as as the property:

A[] (not P1.Create imply P1.z1<=300),
where Create is a location of a plate process and z1 is a clock for the plate P1 (see
Figure 4).

Determine the worst-case time for the plate within the system by systematically de-
creasing the time value. What is the worst-case time for a plate in your system?

3. It should also be investigated, by experimenting with the model, how many plates
that must be in the system to keep it fully busy and within the worst-case end-to-end
requirement for all plates.

If too many plates are added to the system you might experience that plates get stucked
on a location forever (and the worst-case requirement will not be fulfilled).

If to few plates are added to the system the robot will be idle waiting for plates to serve,
(formally it means that you should verify that whenever the feed belt is ready to take
a plate, a plate is ready to be added to the feed belt).

It must also be proved that plates cannot overtake each other, i.e. it is necessary to
show that their locations in the system are occupied under mutual exclusion (the safety
property). In Uppaal this can be said as:

A[] (P1.0nFeed imply not (P2.0nFeed or P3.0nFeed or P4.0nFeed))?.

Determine how many plates that must circulate in your system to keep it fully busy
and within the worst-case requirement.

4. Finally, there are open issues that the design must address. In particular, when a plate
has been placed on the press (which has a relatively long operating period) where should
the robot wait, i.e. what is an optimal value for X7 If it is close to the press it will
take time to move to the table if the new plate arrives. But if it moves to the table
and no plate enters the system it will have further to move to get back to the press.
Having decided on a resting place, the duration of this wait has to be fixed. Eventually
the robot must service the press in order to ensure liveness but it must also attempt to
minimize the end-to-end time that any plate spends in the system. By manipulating the
parameters of the models it is possible to investigate the impact of these design decisions.
This is an important secondary purpose of verification: it allows design alternatives to
be explored.

Determine the optimal value for X by experimenting with your model. Is there a
difference in the importance of X depending on the number of plates in the system?

3Note that this property is only partial, you will have to fill in the details for the right number of plate
processes.

Report

A proper report is to be handed in for the assignment. It should include at least the following:

e The cover page provided at the end of this document.

e A printout of your constructed Robot FSM and a detailed description on how it is
supposed to work. Make sure that your states and variables are descriptively named
after what they are supposed to do.

e Answers and discussions on the properties that should be verified.

e Discussion of the concepts involved, i.e. well thought out and coherent comments re-
garding the topics covered by the assignment, as well as experimental results (if any)
and reasonable conclusions.

This assignment must be handed in no later than 8h00 on Januari 16, 2006.

Some general guidelines of how to make a report:

e Use a word processor, text editor or typewriter to type your solutions. Print your
constructed Robot FSM by saving it as postscript file (in the Template menu).

e Use English in your report.

e Do not print on both sides of the pages.

e Staple your report thoroughly.

e Staple your report with the pages in correct order.

e Leave room in the upper left corner of each paper for the staple.

References

1]

[4]

[5]

Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, Wang
Yi, and Carsten Weise. New Generation of UPPAAL. In International
Workshop on Software Tools for Technology Transfer. Aalborg, Denmark, 1998.
http://www.docs.uu.se/docs/rtmv/papers/bllpww-sub98-1.ps.gz.

A. Burns. How to Verify a Safe Real-Time System. The Application of Model Checking
and a Timed Automata to the Production Cell Case Study. Technical report, Real-Time
System Research Group, Department of Computer Science, University of York, 1998.

Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a Nutshell. Springer
International Journal of Software Tools for Technology Transfer 1(1+2), 1997.
http://www.docs.uu.se/docs/rtmv/papers/lpw-sttt97.ps.gz.

C. Lewerentz and T Lindner. Case Study Production Cell, Formal Development of Reac-
tive Systems. In LNCS, Springer Verlag, volume 891, 1995.

The Uppaal Toolkit, http://www.uppaal.com.

