
Lab: Schedulability Analysis Assignment

Course: Computer System II, 1IT070

Period: Fall 2006

Lab Assistant

name: Noomene Ben Henda
email: noomene.benhenda@it.uu.se
room: 1138

Introduction

The purpose of this assignment is to give students a chance to practice the theories covered by
lecturers and course literature. The assignment will be focusing on the Rate Monotonic (RM) and
Fixed Priority Schedulability (FPS) analyses. The assignment will also cover how to take into
account factors like context switches, blocking and jitter in the analysis.

The assignment should be solved individually or in groups of two. The assignment must be handed
in no later than . For more information on report procedures please see section Report on page
11.

Notation

�i
time

DiCi Ti
Figure 1: Typical parameters of a real-time task

We can illustrate a tasks timely behavior using a time line as in Figure 1, where the gray regions
indicate that the task �i is executing. We will use the following notation for describing tasks:Ti is the period of task �i. For aperiodic tasks we use Ti to denote the minimum inter-arrival

time for task instances.Ci is the Worst Case Execution Time (WCET) of task �i. Please observe that Ci should be a
safe upper estimate of the execution time for the task, but this does not mean that �i will
execute whole Ci time every time it gets released (as illustrated in Figure 1).Di is the relative deadline of task �i. I.e. the maximum allowed time between the arrival (release)
and the completion of an instance.Pi is the priority of task �i.Bi is the longest time task �i might be blocked by lower priority tasks, (see Section Blocking
on page 6).Ji is the worst case jitter for task �i (see Section Jitter on page 8).Ri is the worst case response time for task �i. The goal of most schedulability analysis is to
find Ri and verifying that Ri � Di.

We also let lp(i), ep(i) and hp(i) denote the set of tasks with priority less than, equal to and
higher than task �i respectively. In the ep(i) also task �i will be included.

1

i

j

k
15 20 25

Figure 2: Example of a preemptive schedule

In fixed priority scheduling each task will have a priority assigned to it before execution which
will not change over time.

A system which have several tasks executing can be illustrated by a time table as in Figure 2. The
switch between between tasks can either be preemptive - the kernel can stop a task to let another
task run, and non-preemptive - a task that has started must complete its execution before we can
start another task. The example given in Figure 2 illustrates an execution using a preemptive
scheduler, where task �i has the highest and �k the lowest priority. An "-arrow indicates that a
task starts executing and an #-arrow that a task has finished its execution.

In more detail, the table in Figure 2 illustrates one execution where task �k starts executing at
time 12. At time 14 task �i gets released and preempts task �k. At time 15 task �j gets released
but can not start executing because the higher priority task �i is executing. When a task finish
executing the highest priority waiting task are allowed to execute again, as happens at time 17
when task �j starts to execute. At time 21 a new instance of the high priority task �i gets started
and preempts �j . Finally at time 24 when both task �i and �j has finished their executions task�k can continue its preempted execution.

You should preferably use this type of time tables and the given notations when presenting solu-
tions to the given assignments.

Rate Monotonic

The Rate Monotonic (RM) priority ordering assigns priorities to tasks according to their periods.
Specifically, tasks with higher request rates, i.e. tasks with smaller periods, get higher priorities.
I.e. the task with the shortest period gets the highest priority and the task with longest period
gets the lowest priority. Tasks with higher priority can preempt lower priority tasks. To get the
RM analysis to work all the tasks must have the characteristics of being periodic, independent
and having deadline equal to period. The RM priority assignment is optimal meaning that if the
task set is schedulable with a given fixed-priority assignment it is also schedulable with the RM
priority assignment.

The utilization of a system of n tasks is the fraction of total execution time spent in executing the
tasks, i.e. the computational load of the system. An upper utilization bound U of a system withn periodic tasks can be derived as: U =

nXi=1

CiTi (1)

It can be shown that a set of n independent periodic tasks, with deadlines equal to periods and
scheduled by the RM algorithm will always meet its deadlines, for all task phasing, ifU =

nXi=1

CiTi � n(21=n � 1) (2)

2

We can see that when n!1 the n(21=n � 1) expression approaches ln 2 � 0:693.

The critical instant of a task is the time at which the release of a task will produce the largest
response time for the task. There exists a theorem saying that the critical instant of a task �i
occurs whenever the task is released simultaneously with all tasks with higher priority than �i,
(i.e. the tasks in hp(i)). The most of the following discussions will rely on this theorem for their
correctness.

The simple version of the critical instant theorem is only valid when the tasks are independent,
fixed priority and runs with perfect periodicity. In the latter sections you will investigate how to
change the theorem and corresponding response time formulas to handle factors like blocking and
jitter.

Assignment 1

Task Ci Ti Di�1 2 ms 10 ms 10 ms�2 4 ms 15 ms 15 ms�3 10 ms 35 ms 35 ms

Figure 3: A number of periodic tasks with Di = Ti
Given the task set in Figure 3:

1.1 What is the priority ordering for the tasks using the RM priority ordering?

1.2 Will all tasks complete before their deadlines according to the schedulability formula in Equation 2
on page 2? Draw a critical instant schedule for the given tasks (as in Figure 2, but have all tasks
simultaneously released at time 0). What is the system utilization bound?

1.3 Assume that we want to increase the computation time for task �1 to be C1 = 4. Will all task
complete before their deadlines? Draw a critical instant schedule for the given tasks. What is the
system utilization bound?

1.4 Assume that we want to increase the computation time for task �1 to be C1 = 5. Will all task
complete before their deadlines? Draw a critical instant schedule for the given tasks. What is the
system utilization bound?

1.5 Assume that we instead of modifying �1, (set C1 = 2), want to increase the computation time
for task �3 to be C3 = 17. Will all task complete before their deadlines? Draw a critical instant
schedule for the given tasks. What is the system utilization bound?

1.6 What conclusion can you draw from all this for the schedulability formula in Equation 2 on page 2?
Specify your conclusion in terms of the system utilization bound, the n(21=n � 1) expression and
1:00.

Deadline Monotonic and Rate Monotonic Analysis

The RM priority ordering is not very good when we have tasks with deadline smaller than period,
(D < T): an infrequent but periodic task would still be given a a low priority (because T is large)
and hence probably miss its deadline. For a set of periodic independent tasks, with deadlines
within the period, the optimum priority assignment is the Deadline Monotonic (DM) priority
ordering, which has the following characteristics:� Priorities are assigned according to task deadlines.� A task with shorter deadline is assigned a higher priority.� Tasks with higher priority can preempt lower priority tasks.

3

The RM priority ordering can be seen as a special case of DM priority ordering. For tasks scheduled
by the DM priority ordering there does not exists any simple test for schedulability, like Equation 2
on page 2, but instead we have to calculate the worst case response time for each task separately
and compare it to its deadline.

The worst possible response time for a task with any fixed priority assignment policy, (havingDi � Ti), e.g. DM or RM priority ordering, can be calculated using a response time formula:Ri = Ci +
Xj2hp(i) �RiTj �Cj (3)

where dxe is the ceiling operator and calculates the smallest integer � x. Note that the response
time variable Ri is present on both sides of the equation.

The response time analysis builds upon the critical instant theorem and calculates the time a task
will have completed if it is activated at the same time as all other tasks with higher priority. The
summation gives us the number of times tasks with higher priority will execute before task �i has
completed. The response time for a task can be solved using iteration:Rn+1i = Ci +

Xj2hp(i) �RniTj �Cj (4)

The iteration starts by assuming that the response time is equal to 0. It continues thereafter until
two on each other following values of R becomes equal or R becomes larger than its deadline D.

This kind of fixed point response time analysis is (for historical reasons) called Rate Monotonic
Analysis.

FpsCalc

FpsCalc is a tool for performing Fixed Priority Schedulability analysis and is a recommended help
for solving the given assignments.

A throughout description of FpsCalc is located in:
http://www.docs.uu.se/~ebbe/realtime/fpscalc/fpscalc.html

and http://www.docs.uu.se/~ebbe/realtime/fpscalc/fpscalc.ps

If you are sitting at a Sun-machine of the IT-department you start the FpsCalc program in your
shell by typing:
fpscalc < your program.fps

If you for some reason can’t find the program; it can be started using its full path-name:
/stud/docs/prog/bin/fpscalc < your program.fps

Assignment 1 cont.

1.7 Insert the task set given in Figure 3 on the preceding page in FpsCalc and calculate the response
time of each task. What is the worst-case response time for each task using FpsCalc? Verify that
the times correspond to the times you extracted using a critical instant schedule. In the worst case
scenario, how many instances of �1 respectively �2 can appear during one execution of �3? How

does this values relate to the
lRiTj m expression? How long time of the worst case response time of�3 is spent waiting for instances of �1 respectively �2?

Assignment 2

2.1 Given the task set in Figure 4 on the next page what is the priority ordering for the tasks using the
DM priority ordering? What is the priority ordering using RM priority ordering? Use FpsCalc
to calculate the response time for the tasks in respectively ordering. Will all tasks complete before

4

Task Ci Ti Di�1 2 ms 20 ms 6 ms�2 3 ms 7 ms 7 ms�3 5 ms 14 ms 13 ms�4 4 ms 100 ms 60 ms

Figure 4: A number of periodic tasks with Di � Ti
their deadlines in respectively ordering? If you are not convinced by the formulas you can do a
critical instant schedule.

2.2 Sometimes it is preferable to not use strict RM or DM priority assignment when giving priorities
to tasks. This can for example happen when we want to give a task with low deadline demands a
better service rate or when the system is part of a larger distributed system.

Find two different priority assignments of the tasks in Figure 4 which is neither RM or DM and
where deadlines are missed respectively not missed.

2.3 Assume that we want to implement the tasks given in Figure 4 on a RT-kernel that only supports
3 priority levels and where tasks with the same priority will be handled in FIFO order by the
scheduler. Assume that task �2 and �3 are set to have the same priority and that we use a DM
priority assignment.

Define how the response time formula in Equation 3 on page 4 will be changed when we allow
several tasks to have the same priority. Make sure that it is shown in your formula that a task,
due to the FIFO order, might have to wait for one instance, but can’t be preempted, of an equal
priority task. How will the corresponding FpsCalc formula look like, (observe that sigma(ep, ...)

includes the current task, �i)?
What will now the worst case response time for each task be? Will all tasks meet their deadlines?
Will the worst case response time for task �1 or �4 be affected? Conclusions?

Context Switch Time

The context of a task is the set of registers that the task uses. When the scheduler wants to switch
from running one task to running another task, it must save the context of the old task and load
the context of the new task. The place where the context of a task is saved is usually called the
task control block, and the save and load process is known as a context switch.

Observe that every preemption of one task by another task could result in two context switch
activities: one switch from the lower priority task and one switch back again when the preempting
task completes. This means that each time a higher priority task, say �h preempts a lower priority
task, say �l, we will have an activity like: a) save context of �l b) load context of �h c) let �h
execute until completion d) save context of �h for the next instance e) load context of �l.
Assignment 3

Assume that, for all tasks and context switches, the time to save a task context is upper bounded
by Csave and the time to load a new task context is upper bounded by Cload.

3.1 Extend the response time formula given in Equation 3 on page 4 with the time to do context
switches between tasks. Use the Csave and Cload parameters in your formula. This means that
each tasks computation time must first be extended to include the extra context switch time needed
to first load and finally save the task. After that you must extend your response time formula
to (pessimistically1) include the extra context switch time (see discussion above) each preemption

1If you do a critical instant scheme you will discover that your schedulability formula will be a safe but pessimistic

5

from a higher priority task will result in. A task must be able to save its context before its deadline.

3.2 To illustrate the time needed for context switches, draw a scheme where a task �i arrives and starts
executing for the first time, executes for a while, gets preempted by a higher priority task �j , which
also executes for a while. When �j has completed its execution �i will continue its execution until
it is done. Make sure that you clearly shows that there is a difference from when a task arrives,
until it starts to execute. Make also sure that the times for loading contexts, saving contexts
and executing normally are distinguishable. Finally, make sure that your extended schedulability
formula in 1 actually captures all time used for context switching.

3.3 Assume that Csave = Cload = 0:1 ms for the system in Figure 4 on the previous page. What are
the worst case response times for the tasks (using DM priority order) when including the time for
doing context switches? Are all deadlines met?

For simplification you don’t need to include time for context switches in any of the following parts
of the assignment.

Blocking

One of the restrictions with the previous analyses is that no tasks are allowed to block or voluntary
suspend themselves. This means that it is very difficult to share resources, such as data, between
tasks. In almost all systems where you have several tasks you also have shared resources, e.g.
non-preemptible regions of code, FIFO queues and synchronization primitives. The code where a
task is accessing shared resources are called critical sections, and must often be protected, e.g. by
using semaphores.

p(sem)

write

v(sem)

..

..

shared
memory

p(sem)

read

v(sem)

..

..

�2:�1:

Figure 5: Reading and writing of shared memory using semaphores

The problem with using protection mechanisms, such as semaphores, is that high priority tasks
might get blocked by lower priority tasks while waiting for a semaphore to be released.

Assignment 4

Task Ci Ti Di�1 2 ms 10 ms 5 ms�2 3 ms 20 ms 12 ms�3 10 ms 40 ms 40 ms�4 4 ms 100 ms 50 ms

Figure 6: Four example tasks

estimation. This is because not every instance of higher priority tasks will give raise to a context switch of the

current lower priority task.

6

4.1 Assume that we have the tasks shown in Figure 6 on the preceding page. Give priorities to the
tasks according to the DM priority assignment. Will all tasks always meet their deadlines?

4.2 Assume that task �2 and �4 in Figure 6 are sharing a semaphore S1 and that �2 and �4 executes
for at most 1 ms respectively 2 ms in the critical section. Show, by doing a critical instant scheme
that the deadline for task �2 can be missed if semaphores and no mechanism for limiting priority
inversion (see below) is used. Tip: You might have to model that �4 has taken the semaphore, just
before the moment where you let all the other tasks start executing at the same time.

The phenomena that a higher priority task not only can be blocked by tasks accessing the same
resource but also be delayed by tasks with priorities between the blocking task and the higher
priority task is called priority inversion.

One protocol that handles the priority inversion is the priority inheritance protocol. It works by
letting a low priority task that has a semaphore inherit the priority of the highest priority task
blocked waiting for the semaphore. When the lower priority task releases the semaphore it will go
back to the priority it had before. Notice that the priority of a task now is dynamic so the name
’Fixed Priority’ is not really true anymore.

Assignment 4 cont.

Semaphore Accessed by TimeS1 �2 1S1 �4 2S2 �2 1S2 �3 5

Figure 7: Tasks semaphore usage

4.3 Assume that task �2 not only is sharing a semaphore S1 with �4 but also is sharing a semaphoreS2 with task �3 as given in Figure 7. Also assume that the times the task �2 is accessing the
semaphores S1 and S2 do not overlap. Show, by doing a critical instant scheme that deadline for
task �2 can be missed even though the priority inheritance protocol is used.

If we want to add the cost for blocking, Bi, in our response time formula we can do it like:Ri = Ci + Bi +
Xj2hp(i) �RiTj �Cj

Using the priority inheritance protocol, it can be proved that a task �i accessing m semaphores
can be blocked at most m times. It can also be proved that if we are using the priority inheritance
protocol a task �i can be blocked at most once per lower priority task, and only during one critical
section per semaphore. Secondly, for a lower priority task to block �i it must access a semaphore
which a task with higher or equal priority to �i also is accessing. It gets quite complicated
to calculate an exact blocking value for the priority inheritance protocol, mainly due to that
all combinations of lower priority tasks and semaphores must be tried, (we get a problem with
exponential complexity).

Instead, a simpler, (but somewhat pessimistic), algorithm for calculating the blocking Bi for a
task �i accessing m semaphores can be used: 1. for each semaphore accessed both by a task with
priority lower than �i and by a task with higher or equal priority than �i we extract the maximum
time any lower priority task is accessing the semaphore. 2. set Bi to be the sum of the m largest
timing values extracted in step 1. The overestimation we get is that the same lower priority task
might cause two or more max terms in the summation.

Assignment 4 cont.

7

4.4 What are the blocking times for the tasks in Figure 6 using the priority inheritance protocol?
Make sure that the amount of blocking corresponds to your drawn schedule. Tip: several tasks will
experience blocking. What are the response times for the tasks when using the priority inheritance
protocol?

Schemes that try minimizes the blocking time of high priority tasks is the priority ceiling protocol
and the immediate inheritance protocol. Since they have the same worst case blocking time we
will only investigate the immediate inheritance protocol.

The immediate inheritance protocol works by, in advance for each semaphore, calculate the high-
est priority of all tasks that will lock the semaphore. This is called the priority ceiling for the
semaphore. When a task is locking the semaphore its priority will immediately be raised the
maximum of its current priority and the priority ceiling of the semaphore. When the tasks leaves
the semaphore its priority will go back to what it was before.

It can be proven, when using the priority ceiling protocol or the immediate inheritance protocol,
that a higher priority task �i can be blocked at most once by a lower priority task. The blocking
time is at most one critical section of any lower priority task locking a semaphore with ceiling
greater than or equal to the priority of task �i. The blocking term can be given by:Bi = maxf j;s j j2lp(i) ^ s2
s(j) ^
eil(s)�Pi) gCSj;s
Short explanation: 1. Look at all tasks with priority lower than �i. 2. Look at all semaphores that
these tasks can lock and single out the semaphores where the ceiling of the semaphore is higher
than or equal to the priority of �i. 3. For each semaphore extracted in step 2. extract the largest
computation time that the semaphore is locked by one task with priority lower than �i, (CSj;s
is the computational time for task �j to execute in the s:th critical section). 4. Set the largest
computation time extracted in step 3. to the blocking time Bi of task �i.
Observe that FpsCalc has built in functionality for calculating blocking when using the priority
ceiling- or immediate inheritance- protocol.

Assignment 4 cont.

4.5 What are the priority ceilings for the semaphores S1 and S2? What are the blocking times for
the tasks in Figure 6 using the immediate inheritance protocol? Tip: several task will experience
blocking. Explain why task �3 can experience blocking even though it does not share any semaphore
with �4. Will all tasks complete before their deadlines?

Jitter

Arrival
(invocation)

Release

Time

Completion

Jitter Execution

Response Time

����
����
����
����

Figure 8: Release, Start of the Execution, and Jitter

In the simple model, all processes are assumed to be periodic and to be released with perfect
periodicity. This is not, however, always a realistic assumption. Jitter is the difference between

8

the earliest and latest start of the task execution relative the periodic arrival (release) of the task.
I.e. it is not certain that a task can start executing with a precise periodicity even though there is
no higher priority tasks executing at the same time. The jitter Ji for a task �i can be illustrated
as the largest possible delay between the arrival time and the time when it starts executing for
any instance of the task (independent of other tasks execution). Figure 8 illustrates how the jitter
relates to some other already known concepts.

�
�
�

�
�
�

�����
�����
�����

�����
�����
�����

�
�
�

�
�
�

= Execution = Jitter

t
(a) (b)

10 20 30 40

Figure 9: Release jitter due to tick scheduling every 10ms

One source of jitter is a tick-driven scheduler, i.e. we can only do context switches at regular
intervals invoked by the timer hardware. For example see Figure 9 where a tick-driven scheduler
is invoked, by a timer-interrupt, every 10th ms, to see if any new task instance has arrived. In
case Figure 9(a) we are lucky, since �i:s instance arrives just before the scheduler got invoked and�i will start to execute immediately after. In case Figure 9(b) we are more unlucky since �i:s
instance arrives just after the last instance of the scheduler. We now have to wait 10 more ms
before the scheduler gets invoked and performs a context switch to task �i. The jitter of task �i
will therefore be 10 ms, (j0� 10j = 10), due to the tick-driven scheduler.

Assignment 5

5.1 Another source of jitter is varying execution and response times for tasks (or messages) that starts
other tasks. To illustrate this assume a system with two tasks �1 and �2. Let task �1 have a
period T1 = 10 and a fixed (non-varying) execution time C1 = 3. Assume task �1 always ends its
execution by starting task �2. Let �2 have a worst case execution time of C2 = 2.

Draw a schedule that shows two instances of �1 respectively �2. What is the period T2 of task �2?

5.2 To illustrate that varying execution time of �1 might cause jitter of �2 assume that �1’s execution
time no longer is fixed but varies between Cmin

1 = 3 and Cmax
1 = 5. Task �1 still starts task �2 at

the end of its execution.

Draw a schedule with two instances of �1 that shows that the varying execution time of �1 might
give raise to jitter of �2. What is the maximum jitter that task �2 can experience?

5.3 To illustrate that interference of high priority tasks might give raise to further jitter of low priority
tasks we add a task �0 to the system. Let task �0 have higher priority than both �1 and �2, a periodT0 = 20 and a worst case execution time C0 = 2.

Draw a schedule that shows that varying response time of �1 due to interference of �0 will give
raise to further jitter of �2. Task �1’s execution time still varies between Cmin

1 and Cmax
1 . What

is the maximum jitter that �2 can experience due to varying response and execution time of �1?

After the above example of how jitter can be derived we will now investigate how jitter of different
tasks might interact to cause larger response times of lower priority tasks.

Assignment 5 cont.

5.4 For the given tasks �A and �B in Figure 10 with DM priority ordering, what is the worst case
response time for respective task assuming that we have no jitter. Will both tasks be able to
complete before their deadlines?

Assuming that the tasks are experiencing jitter as given in Figure 10 we can use the formula given

9

Task Ci Ti Di Ji�A 5 ms 20 ms 10 ms 5 ms�B 30 ms 50 ms 50 ms 10 ms

Figure 10: Two example tasks with jitter

in Equation 5 to calculate how this will affect the worst case response time of the tasks.wi = Ci +
Xj2hp(i) �wi + JjTj �Cj

= Ci +
Xj2hp(i)�1 +

�wi � (Tj � Jj)Tj ��CjRi = wi + Ji (5)

Assignment 5 cont.

5.5 Given the formula in Equation 5 what is the worst case response time for respective tasks assuming
that they can experience jitter? Will both tasks be able to complete before their deadlines?

We can construct a task schedule giving the same worst case response time for tasks as the formula
in Equation 5.

To construct it we can observe that the critical instant is when both tasks start executing at the
same time (i.e. not when they are released at the same time) and both tasks experience maximum
jitter for their first, (but not the following), instances. As illustrated in Figure 8 the response time
of a task will be the time from which it wants to start executing (release) and the time when it
completes its execution. When a task experiences jitter another task can of course execute (if it
wants to).

Looking in more detail at the formula in Equation 5 you can see that it is divided into two parts.
The Ri = : : : part express that task �i can not get preempted when it experiences jitter. The
jitter Ji must still be added to the response time for task �i (as illustrated in Figure 8).

The wi = : : : part represent the time during which �i can get preempted by higher priority tasks.

The (1+dwi�(Tj�Jj)Tj e) expression captures the release scheme of a higher priority task �j in which

it will be able to preempt �i as much as possible. This is, in the worst case the first instance of
the �j will have maximum jitter, while the rest of the instances will have minimum jitter.

Assignment 5 cont.

5.6 Draw a task schedule for the tasks �A and �B in Figure 10 which gives the same worst case response
times as the formula in Equation 5. Indicate release, jitter, beginning of execution, execution,
preemption, and completion for each task in your schedule.

10

Report

A proper report is to be handed in for the assignment. It should include at least the following:� The cover page provided at the end of this document.� Answers to the assignments. When asked for, illustrate your answers by drawing timing
schedules.� Informative listings of test runs in FpsCalc.

The assignment must be handed in no later than .

Some general guidelines of how to make a report:� Use a word processor, text editor or typewriter to type your solutions. Pictures and diagrams
may be drawn by hand.� Provide answers to the questions. Answers should be extracted from FpsCalc files and
results. (I.e. do not give answers like “see foo.fps for equation”.)� Do not print on both sides of the pages.� Staple your report thoroughly and with the pages in correct order.

11

Lab: Schedulability Analysis Assignment

Course: Computer System II, 1IT070

Period: Fall 2006

Lab Assistant

name: Noomene Ben Henda
email: noomene.benhenda@it.uu.se
room: 1138

I/We have solved these assignments independently, and each of us has actively participated in the
development of all of the assignment solutions.

Student 1 Student 2

. .
Signature Signature

. .
Name Name

. .
Personnummer Personnummer

. .
User name User name

