
Computer Systems DV1 (1DT151)
Operating Systems (1DT020)

Cary Laxer, Ph.D.
Visiting Lecturer

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 3, 2007 Computer Systems/Operating Systems - Class 1 2

Today’s class
Introductions
Review of some C
Computer system overview

Introductions

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 3, 2007 Computer Systems/Operating Systems - Class 1 4

Instructor
Cary Laxer
Visiting lecturer
Home institution is Rose-Hulman Institute of
Technology, Terre Haute, Indiana, USA
Professor and Head of Computer Science and
Software Engineering
Bachelor’s degree in computer science and
mathematics from New York University
Ph.D. in biomedical engineering from Duke
University

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 3, 2007 Computer Systems/Operating Systems - Class 1 5

Lab instructor
John Håkansson
Ph.D. student in the department
M.Sc. in 2000
Industry experience writing C compilers
for embedded systems and as a robot
programmer
Has assisted teaching this course before

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 3, 2007 Computer Systems/Operating Systems - Class 1 6

Course
Information is maintained on the course
website: www.it.uu.se/edu/course/homepage/datsystDV/ht07

12 lecture meetings and 4 lab meetings
Text is Operating Systems: Internals and
Design Principles (Fifth Edition) by William
Stallings
We will cover chapters 1-10, 12, and 16
I will try to have some in-class exercises to help
reinforce the material and to break up the long
lecture periods

http://www.it.uu.se/edu/course/homepage/datsystDV/ht07

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 3, 2007 Computer Systems/Operating Systems - Class 1 7

Introduce yourselves
Tell us:

Your name
Your hometown
Your computer background
Something interesting about yourself

Review of C

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 3, 2007 Computer Systems/Operating Systems - Class 1 9

Why learn C?
The good…

Both a high-level and a low-level language
Better control of low-level mechanisms
Performance better than Java
Java hides many details needed for writing OS code

And the bad…
Memory management responsibility is yours
Explicit initialization and error detection
More room for mistakes

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 3, 2007 Computer Systems/Operating Systems - Class 1 10

Goals of this review
To review (introduce if you are new to C)
some basic C concepts to you

so that you can read further details on your
own

To warn you about common mistakes
made by beginners

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 3, 2007 Computer Systems/Operating Systems - Class 1 11

Creating an executable

Source: http://www.eng.hawaii.edu/Tutor/Make/1-2.html

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 3, 2007 Computer Systems/Operating Systems - Class 1 12

Types of files
C source files (.c)
C header files (.h)
Object files (.o)
Executable files (typically no extension –
by default : a.out)
Library files (.a or .so)

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 3, 2007 Computer Systems/Operating Systems - Class 1 13

Example 1
#include <stdio.h> //#include “myheader.h”

int
main()
{

printf(“Hello World. \n \t and you ! \n ”);
/* print out a message */

return 0;
}

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 3, 2007 Computer Systems/Operating Systems - Class 1 14

Summarizing the Example
#include <stdio.h> = include header file stdio.h

No semicolon at end
Small letters only – C is case-sensitive

int main(){ … } is the only code executed
printf(“ /* message you want printed */ ”);
\n = newline \t = tab
\ in front of other special characters within printf
creates “escape sequences”.

printf(“Have you heard of \”The Rock\” ? \n”);

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 3, 2007 Computer Systems/Operating Systems - Class 1 15

Compiling and running
>gcc ex1.c (Creates a.out)
>./a.out (Runs the executable)

>gcc ex1.c –o ex1 (Creates ex1 not a.out)
>./ex1

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 3, 2007 Computer Systems/Operating Systems - Class 1 16

External library files
libname.a or libname.so

Special functionality is provided in the form of
external libraries of ready-made functions
Ready-compiled code that the compiler merges,
or links, with a C program during compilation
For example, libraries of mathematical
functions, string handling functions, and
input/output functions
Look for the library files under /usr/lib and
header files under /usr/include

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 3, 2007 Computer Systems/Operating Systems - Class 1 17

External library files
libname.a or libname.so

To compile, use flag To compile, use flag ““ll”” and name i.e. and name i.e. ––lnamelname..
egeg. . gccgcc ––o test o test test.ctest.c ––lm lm

where where ““mm”” in in ““lmlm”” comes from comes from libm.solibm.so i.e. the math i.e. the math
library.library.

.a libraries are static .a libraries are static –– code is included in the code is included in the
executable programexecutable program
.so libraries are dynamic .so libraries are dynamic –– code is not in the code is not in the
executable program; the system copy is used at executable program; the system copy is used at
run timerun time

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 3, 2007 Computer Systems/Operating Systems - Class 1 18

Using external library files
To use the library files, you must always
do two things:

link the library with a -l option to gcc
include the library header files

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 3, 2007 Computer Systems/Operating Systems - Class 1 19

Pre-processor directives
A preprocessor is a program that
examines C code before it is compiled
and manipulates it in various ways.
Two main functions

To include external files using #include
To define macros (names that are expanded
by the preprocessor into pieces of text or C
code) using #define

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 3, 2007 Computer Systems/Operating Systems - Class 1 20

Example of pre-processor
directives

Example 2:

#include <stdio.h>
#define STRING1 "A macro definition\n"
#define STRING2 "must be all on one line!\n"
#define EXPRESSION1 1 + 2 + 3 + 4
#define EXPRESSION2 EXPRESSION1 + 10
#define ABS(x) ((x) < 0) ? -(x) : (x)
#define MAX(a,b) (a < b) ? (b) : (a)
#define BIGGEST(a,b,c) (MAX(a,b) < c) ? (c) : (MAX(a,b))

int
main ()
{
printf (STRING1);
printf (STRING2);
printf ("%d\n", EXPRESSION1);
printf ("%d\n", EXPRESSION2);
printf ("%d\n", ABS(-5));
printf ("Biggest of 1, 2, and 3 is %d\n", BIGGEST(1,2,3));
return 0;
}

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 3, 2007 Computer Systems/Operating Systems - Class 1 21

#define
The expression is NOT evaluated when it
replaces the macro in the pre-processing
stage.
Evaluation takes place only during the
execution phase.

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 3, 2007 Computer Systems/Operating Systems - Class 1 22

Simple Data Types
Data Type # bytes

(typical) Shorthand

int 4 %d %i
char 1 %c
float 4 %f

double 8 %lf
long 4 %l
short 2 %i

String - %s
address - %p(HEX) or %u (unsigned int)

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 3, 2007 Computer Systems/Operating Systems - Class 1 23

Example 3
#include <stdio.h>

int
main()
{

int nstudents = 0; /* Initialization, required */
float age = 21.527;

printf(“How many students does Uppsala University have ?”);
scanf (“%d”, &nstudents); /* Read input */
printf(“Uppsala University has %d students.\n”, nstudents);
printf(“The average age of the students is %3.1f\n”,age);

//3.1 => width.precision
return 0;

}

>./ex3
How many students does Uppsala University have ?:2000 (enter)
Uppsala University has 2000 students.
The average age of the students is 21.5
>

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 3, 2007 Computer Systems/Operating Systems - Class 1 24

If you are familiar with Java…
Operators same as Java:

Arithmetic
int i = i+1; i++; i--; i *= 2;
+, -, *, /, %

Relational and Logical
<, >, <=, >=, ==, !=
&&, ||, &, |, !

Syntax same as in Java:
if () { } else { }
while () { }
do { } while ();
for (i=1; i <= 100; i++) { }
switch () {case 1: … }
continue; break;

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 3, 2007 Computer Systems/Operating Systems - Class 1 25

Example 4
#include <stdio.h>
#define DANGERLEVEL 5 /* C Preprocessor -

- substitution on appearance */
int
main()
{

float level=1;
if (level <= DANGERLEVEL){ /*replaced by 5*/

printf(“Low on gas!\n”);
}
else printf(“On my way !\n”);

return 0;
}

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 3, 2007 Computer Systems/Operating Systems - Class 1 26

One-Dimensional Arrays
Example 5:
#include <stdio.h>

int
main()
{

int number[12]; /* 12 numbers*/
int index, sum = 0;

/* Always initialize array before use */
for (index = 0; index < 12; index++) {

number[index] = index;
}
/* now, number[index]=index; will cause error:why ?*/

for (index = 0; index < 12; index = index + 1) {
sum += number[index]; /* sum array elements */

}

return 0;
}

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 3, 2007 Computer Systems/Operating Systems - Class 1 27

More arrays - Strings
char name[10]; //declaration
name = {‘A’,’l’,’i’,’c’,’e’,’\0’}; //initialization

/* ’\0’= end of string */
char name [] = “Alice”; //declaration and initialization
char name [] = {‘A’,’l’,’i’,’c’,’e’,’\0’}; // ditto
scanf(“%s”,name); //Initialization

// ERROR: scanf(“%s”,&name);
printf(“%s”, name); /* print until ‘\0’ *

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 3, 2007 Computer Systems/Operating Systems - Class 1 28

Strings continued
Functions to operate on strings

strcpy, strncpy, strcmp, strncmp, strcat,
strncat, substr, strlen,strtok
#include <strings.h> or <string.h> at program
start

CAUTION: C allows strings of any length
to be stored. Characters beyond the end
of the array will overwrite data in memory
following the array.

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 3, 2007 Computer Systems/Operating Systems - Class 1 29

Multi-dimensional arrays
intint points[3][4];points[3][4];
points [1][3] = 12; points [1][3] = 12; /* NOT points[3,4] *//* NOT points[3,4] */
printf(printf(““%d%d””, points[1][3]);, points[1][3]);

Computer system overview

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 3, 2007 Computer Systems/Operating Systems - Class 1 31

Operating System
Exploits the hardware resources of one or
more processors
Provides a set of services to system users
Manages secondary memory and I/O
devices

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 3, 2007 Computer Systems/Operating Systems - Class 1 32

Basic Elements
Processor
Main Memory

volatile
referred to as real memory or primary memory

I/O modules
secondary memory devices
communications equipment
terminals

System bus
communication among processors, memory, and I/O
modules

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 3, 2007 Computer Systems/Operating Systems - Class 1 33

Processor
Two internal registers

Memory address register (MAR)
Specifies the address for the next read or write

Memory buffer register (MBR)
Contains data written into memory or receives
data read from memory

I/O address register
I/O buffer register

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 3, 2007 Computer Systems/Operating Systems - Class 1 34

Top-Level Components

PC MAR

IR MBR

I/O AR

I/O BR

CPU Main Memory

System
Bus

I/O Module

•
•
•

•
•
•

•
•
•

Buffers

Instruction

0
1
2

n - 2
n - 1

Data

Data

Data

Data

Instruction

Instruction

Figure 1.1 Computer Components: Top-Level View

PC = Program counter
IR = Instruction register
MAR = Memory address register
MBR = Memory buffer register
I/O AR = Input/output address register
I/O BR = Input/output buffer register

Execution
unit

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 3, 2007 Computer Systems/Operating Systems - Class 1 35

Processor Registers
User-visible registers

Enable programmer to minimize main-
memory references by optimizing register
use

Control and status registers
Used by processor to control operating of the
processor
Used by privileged operating-system routines
to control the execution of programs

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 3, 2007 Computer Systems/Operating Systems - Class 1 36

User-Visible Registers
May be referenced by machine language
Available to all programs - application
programs and system programs
Types of registers

Data
Address

Index
Segment pointer
Stack pointer

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 3, 2007 Computer Systems/Operating Systems - Class 1 37

User-Visible Registers
Address Registers

Index
Involves adding an index to a base value to get an
address

Segment pointer
When memory is divided into segments, memory
is referenced by a segment and an offset

Stack pointer
Points to top of stack

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 3, 2007 Computer Systems/Operating Systems - Class 1 38

Control and Status Registers
Program Counter (PC)

Contains the address of an instruction to be fetched
Instruction Register (IR)

Contains the instruction most recently fetched
Program Status Word (PSW)

Condition codes
Interrupt enable/disable
Supervisor/user mode

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 3, 2007 Computer Systems/Operating Systems - Class 1 39

Control and Status Registers
Condition Codes or Flags

Bits set by the processor hardware as a
result of operations
Examples

Positive result
Negative result
Zero
Overflow

	Computer Systems DV1 (1DT151)�Operating Systems (1DT020)
	Today’s class
	Introductions
	Instructor
	Lab instructor
	Course
	Introduce yourselves
	Review of C
	Why learn C?
	Goals of this review
	Creating an executable
	Types of files
	Example 1
	Summarizing the Example
	Compiling and running
	External library files�libname.a or libname.so
	External library files�libname.a or libname.so
	Using external library files
	Pre-processor directives
	Example of pre-processor directives
	#define
	Simple Data Types�
	Example 3
	If you are familiar with Java…
	Example 4
	One-Dimensional Arrays
	More arrays - Strings
	Strings continued
	Multi-dimensional arrays
	Computer system overview
	Operating System
	Basic Elements
	Processor
	Top-Level Components
	Processor Registers
	User-Visible Registers
	User-Visible Registers
	Control and Status Registers
	Control and Status Registers

