UPPSALA
UNIVERSITET

Today’s class

m Finish computer system overview
m Review of more C

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Thursday, September 6, Computer Systems/Operating Systems - Class 2
2007

Finish computer system
overview

UPPSALA
UNIVERSITET

Instruction Execution

m [WO steps

#» Processor reads (fetches) instructions from
memory

Processor executes each instruction

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Thursday, September 6, Computer Systems/Operating Systems - Class 2
2007

UPPSALA
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Instruction Cycle

Fetch Stage Execute Stage

Fetch Mext Execute
ks P
START Instruction Instruction

Figure 1.2 Basic Instruction Cycle

Thursday, September 6, Computer Systems/Operating Systems - Class 2
2007

Instruction Fetch and
Execute

UPPSALA
UNIVERSITET

m Program counter (PC) holds address of
the instruction to be fetched next

"he processor fetches the instruction from
that memory location :

m Program counter is incremented after
each fetch

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Thursday, September 6, Computer Systems/Operating Systems - Class 2 5
2007

u
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Instruction Register

m Fetched instruction is placed in the instruction
register

m Categories
#* Processor-memory
= Transfer data between processor and memory
» Processor-1/0
= Data transferred to or from a peripheral device
» Data processing
= Arithmetic or logic operation on data

» Control
= Alter sequence of execution

Thursday, September 6, Computer Systems/Operating Systems - Class 2
2007

Characteristics of a
Hypothetical Machine

UPPSALA
UNIVERSITET

Opcode Address

(a) Instruction format

| s | Magnitude

(b) Integer format

Program Counter (PC) = Address of instruction
Instruction Register (IR) = Instruction being executed
Accumulator (AC) = Temporary storage

(¢) Internal CPU registers
0001 = Load AC from Memory

0010 = Store AC to Memory
0101 = Add to AC from Memory

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

(d) Partial list of opcodes

Figure 1.3 Characteristics of a Hypothetical Machine

Thursday, September 6, Computer Systems/Operating Systems - Class 2
2007

Example of Program Execution

UPPSALA
UNIVERSITET Memory CPLU Registers Memiory CPU Registers
3001 940 30 0[PC 2001 9 40 30 1\PrC
3D159411 ACH301)5 9 4 1] 000 3[AC
3022 9 4 1 1 9 4 0llIR 3D21941f194nm
u u
[| [|
40/0 oo 3 24000 0 0 3
S41(0 0 0 2 Q4100 0 0 2
@) Step 1 Step 2
o Memory CPLU Registers Memiory CPL Registers
— 3001 940 a0 1|PpC 2001 9 40 302\ PC
O 301({5 & 4 1] 000 3|AC)30115 9 4 1] 000 5|AC
- 3021941_‘1'-5941112 a02[2 9 4 1 c5941’3%
u u
:‘ [| [|
2400 0 0 3 24000 0 0 3 3+2 =5
(€b) o41[0 0 0 2 941UUU1————"2
o
(n Step 3 Step 4
C Memory CPLU Registers Memiory CPL Registers
O 3001 9 4 0 3 0 2|PC 30001 9 40 an 3 prC
" — 301({5 & 4 1] 000 5|AC)30115 9 4 1 0 005|AC
-IC—GJ 302(2 9 4 1—=»29 4 1|IR | 302]2 9 4 1 294 1|IR
u u
[| [|
40/0 oo 3 24000 0 0 3
S41(0 0 0 2 94100 0 0 5
L
o Step 5 Step 6
o

Figure 1.4 Example of Program Execution
(contents of memory and registers in hexadecimal)

Thursday, September 6, Computer Systems/Operating Systems - Class 2
2007

UPPSALA

Bl Direct Memory Access (DMA)

m |/O exchanges occur directly with memory

m Processor grants I/O module authority to
read from or write to memory

m Relieves the processor of the
responsibility for the exchange

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Thursday, September 6, Computer Systems/Operating Systems - Class 2 9
2007

o)
UPPSALA
UNIVERSITET

Interrupts

m Interrupt the normal sequencing of the
processor

m Most I/O devices are slower than the
processor

» Processor must pause to wait for device

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Thursday, September 6, Computer Systems/Operating Systems - Class 2 10
2007

UPPSALA
UNIVERSITET

Classes of Interrupts

Table 1.1 Classes of Interrupts

Program Generated by some condition that occurs as a result of an instruction
execution, such as arithmetic overflow, division by zero, attempt to execute
an illegal machine instruction, and reference outside a user's allowed
Memory space.

Timer Generated by a timer within the processor. This allows the operating system
to perform certain functions on a regular basis.

o Generated by an I/O controller, to signal normal completion of an operation
ot to signal a variety of error conditions.

Hardware fallure Generated by a failure, such as power failure or memory parity error.

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Thursday, September 6, Computer Systems/Operating Systems - Class 2 11
2007

Program Flow of Control
Without Interrupts

UNIVERSITET

User LAy
. F:I.'DEEJII. 4 » FIDEEEJII.
(@) @D AT @
Q e <o
@) WRITE :'ﬂ- :':. Command
C e N
r
= Fd i o
4(7; @ f. ‘.:,-* EMID
P
C : _..""f
.9 ;_-:F_H.
+ WRITE
®©
=
o @
¥ :
-
- -
WERITE

(2) Nointerrupts

Thursday, September 6, Computer Systems/Operating Systems - Class 2 12
2007

UPPSALA
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Program Flow of Control With
Interrupts, Short 1/O Wait

Thursday, September 6,
2007

User

Program
Fh
®© AT
_0'." H E
LY B
—— - 0,00
".'. "000‘.;.‘?"
WRITE p00°° S
- ..' .l
s 5
S
) oy
£ ¢
b SN
e P
®e
@ PR Se.o,
o0 §~
LR e
'l'o ‘._. ‘.s H
e—— :.' ‘J. . :
i(. o ‘..ﬂ :
WRITE . < .?\ .
e V4 IS H
P N
u‘. '.' o
s =
@ ’._. o
L'. "l.
.'.
X
1w
WRITE

/0
Program

@

_I/O—
Command

Interrupt
[efruilte

®

END

(b) Interrupts; short I/O wait

Computer Systems/Operating Systems - Class 2

13

L 3l Program Flow of Control With
Interrupts; Long I/O Walt

Ulser

F'IDEEIJIL . Program
A

@© A ‘@

UNIVERSITET

(@)
Q 1 2 _f. 'O
@) WRITE ©weee=" e Command
- — {7 i
¢ f
&) i
d @ .‘:
8 5';._ Interrupt
o | g T
® T i 2 S e B
E i % END
— i
~£2 @ !i;
cC ."_:'-

WRITE ¥

() Interrupts; long IO wait

Thursday, September 6, Computer Systems/Operating Systems - Class 2 14
2007

o)
UPPSALA
UNIVERSITET

Interrupt Handler

m Program to service a particular I/O device
= Generally part of the operating system

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Thursday, September 6, Computer Systems/Operating Systems - Class 2 15
2007

UPPSALA
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Interrupts

m Suspends the normal sequence of
execution

User Program Interrupt Handler
|
2
L] L]
L
L]
i
Interrupt —»
occurs here i+1 <

Figure 1.6 Transfer of Control via Interrupts

Thursday, September 6, Computer Systems/Operating Systems - Class 2
2007

16

UPPSALA
UNIVERSITET

Interrupt Cycle

Fetch Stage Execute Stage Interrupt Stage

Interrupts
Disabled

Check for

Fetch next Execute interrupt;
instruction instruction nterrupts initiate interrupt
handler

Enabled

(HALT '

Figure 1.7 Instruction Cycle with Interrupts

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Thursday, September 6, Computer Systems/Operating Systems - Class 2 17
2007

UPPSALA
UNIVERSITET

Interrupt Cycle

m Processor checks for interrupts

m |[f no interrupts fetch the next instruction
for the current program

m |[f an interrupt is pending, suspend
execution of the current program, and
execute the interrupt-handler routine

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Thursday, September 6, Computer Systems/Operating Systems - Class 2
2007

18

Timing Diagram Based on Short
e | /O Walit

Processor o o
wait operation operation

® o
operation

Processor Yo
operation

elGIESIEEE

(b) With interrupts

@ {circled numbers refer
to numbers in Figure 1.5b)

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

(a} Without interrupts
(circled numbers refer
to numbers in Figure 1.5a)

Figure 1.8 Program Timing: Short I/O Wait

Thursday, September 6, Computer Systems/Operating Systems - Class 2 19
2007

Timing Diagram Based on Long

G
UPPSALA .
Time

B /O Walit |

o
@

© |oje)

" m— Processor U(:i
wait operation o
c) operation
Q 6 Processor
it
O wai ‘
-
X © BON
% ®
C T ®
O o
u m— Processor /o operation
g wait operation Pru‘:;;sor
= HON ®
2
(b} With inte
C @ {circledlnu;:llbel:;ﬁer

to numbers in Figure 1.5c)

{a} Without interrupts
(circled numbers refer
to numbers in Figure 1.5a)

Figure 1.9 Program Timing: Long I/O Wait

Thursday, September 6, Computer Systems/Operating Systems - Class 2 20
2007

UPPSALA
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Thursday, September 6,
2007

Hardware

—A—

Device controller or
other system hardware
issues an interrupt

Processor finishes
execution of current
instruction

Processor signals
acknowledgment
of interrupt

Processor pushes PSW
and PC onto control
stack

Processor loads new
PC value based on
interrupt

Simple Interrupt Processing

Software

~—A——

Save remainder of
process state
information

Process interrupt

Restore process state
information

Restore old PSW
and PC

Figure 1.10 Simple Interrupt Processing

Computer Systems/Operating Systems - Class 2

21

UPPSALA
UNIVERSITET

Multiple Interrupts

m Disable interrupts while an interrupt is
being processed

Interrupt
User Program Handler X

X

Interrupt
Handler ¥
'--._.*:

;

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

(a) Sequential interrupt processing

Thursday, September 6, Computer Systems/Operating Systems - Class 2
2007

22

UPPSALA
UNIVERSITET

Multiple Interrupts

m Define priorities for interrupts

Interrupt
User Program Handler X

/ﬂ.‘r—:
Interrupt
andler Y

//

‘_\—‘

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

mIIIIIIIIIIII|r

(b) Nested interrupt processing

Thursday, September 6, Computer Systems/Operating Systems - Class 2
2007

23

UPPSALA
UNIVERSITET

Multiple Interrupts

. 5) U P Printer Communication
o ser Trogram interrupt service routine interrupt service routine
[- FE
- 0 - = —
C - 52 - 2 -
4 - - -
— _.../ —
D - _% -
) - L -
—“"“-._“ — -
U) - i - Disk
(- - N - Wﬂpt service routine
O — e — e
S - e
%
-

Figure 1.13 Example Time Sequence of Multiple Interrupts

Thursday, September 6, Computer Systems/Operating Systems - Class 2
2007

24

o)
UPPSALA
UNIVERSITET

Multiprogramming

m Processor has more than one program to
execute

m The sequence the programs are executed
depend on their relative priority and
whether they are waiting for I/O

m After an interrupt handler completes,
control may not return to the program that -
was executing at the time of the interrupt :

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Thursday, September 6, Computer Systems/Operating Systems - Class 2 25
2007

o)
UPPSALA
UNIVERSITET

Memory

m Faster access time, greater cost per byte
m Greater capacity, smaller cost per byte
m Greater capacity, slower access speed

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Thursday, September 6, Computer Systems/Operating Systems - Class 2 26
2007

UPPSALA
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Memory Hierarchy

Thursday, September 6,
2007

Figure 1.14 The Memory Hierarchy

Computer Systems/Operating Systems - Class 2

27

g
UPPSALA
UNIVERSITET

Going Down the Hierarchy

m Decreasing cost per byte
m Increasing capacity
m Increasing access time

m Decreasing frequency of access of the
memory by the processor

» Locality of reference

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Thursday, September 6, Computer Systems/Operating Systems - Class 2 28
2007

o)
UPPSALA
UNIVERSITET

Secondary Memory

= Nonvolatile
m Auxiliary memory
m Used to store program and data files

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Thursday, September 6, Computer Systems/Operating Systems - Class 2 29
2007

UPPSALA

a Disk Cache

m A portion of main memory used as a
buffer to temporarily to hold data for the
disk

m Disk writes are clustered

m Some data written out may be referenced
again. The data are retrieved rapidly from
the software cache instead of slowly from
disk

Thursday, September 6, Computer Systems/Operating Systems - Class 2 30
2007

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

g
UPPSALA
UNIVERSITET

Cache Memory

m Invisible to operating system
m Increase the speed of memory

m Processor speed is faster than memory
speed

m Exploit the principle of locality

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Thursday, September 6, Computer Systems/Operating Systems - Class 2 31
2007

UPPSALA
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Cache Memory

Word Transfer

(\—ol_a—\

Block Transfer

(\—*._r'\

CPU

1

Cache

Main Memory

Figure 1.16 Cache and Main Memory

Thursday, September 6,

2007

Computer Systems/Operating Systems - Class 2

32

UPP SALA
UNIVERSITET

Cache Memory

m Contains a copy of a portion of main
memory

m Processor first checks cache

m |f not found In cache, the block of memory
containing the needed information Is
moved to the cache and delivered to the
processor

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Thursday, September 6, Computer Systems/Operating Systems - Class 2 33
2007

Cache Read Operation

UNIVERSITET
START
RA -read address
Receive address
RA from CPU

Is block
containing RA
in cache?

Access main
memary for block
containing RA

Feich RA word Allocate cache
and deliver slot for main
ta CPU memary block

Load main
memory block
into cache slot

Deliver RA word
to CPU

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Figure 1.18 Cache Read Operation

Thursday, September 6, Computer Systems/Operating Systems - Class 2
2007

34

UPPSALA

N Cache Data Modified

m Write policy dictates when the memory
write operation takes place g
» Can occur every time cache block is updated -

» Can occur only when cache block is replaced :
= Minimizes memory write operations :
= Leaves main memory in an obsolete state

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Thursday, September 6, Computer Systems/Operating Systems - Class 2 35
2007

/O Communication
Techniques

UPPSALA
UNIVERSITET

m Programmed I/O
m Interrupt-driven 1/O
m Direct memory access (DMA)

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Thursday, September 6, Computer Systems/Operating Systems - Class 2 36
2007

UPPSALA
UNIVERSITET

Issne Read

Programmed |/O

action, not the processor

m Sets appropriate bits in the I/O
status register

= No interrupts occur

operation is complete

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

MNext instruction
(a) Programmed /O

Thursday, September 6, Computer Systems/Operating Systems - Class 2
2007

command to [|CPU — /O

m |/O module performs the 0 cpU

Error

m Processor checks status until Wi CPU > memory

37

UPPSALA
UNIVERSITET

Interrupt-Driven I/O ==y m....,

VO module [~ Pelse

Read status

m Processor is interrupted when I/O ovo T
module ready to exchange data

Processor saves context of
program executing and begins
executing interrupt-handler I

® No needless waiting

m Consumes a lot of processor time = CPU > memory
because every word read or
written passes through the

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

processor
Next instruction
(b} Interrupt-driven /'O
Thursday, September 6, Computer Systems/Operating Systems - Class 2 38

2007

UPPSALA
UNIVERSITET

Direct Memory Access

to 3 ® Transfers a block of data
@)] Issue Read PU — DMA
S directly to or from memory Ll‘i‘}]‘.g.“m“‘il--+;,'“5““‘ﬂ“‘*“g
C . . module 1a]
28 m An interrupt is sent when
EB . Read status - = = Interrupt
0 the transfer is complete of DMA
C module DMA — CPU
I8 m Processor continues with -
g Other Work (c) Direct memory access
S
E
Thursday, September 6, Computer Systems/Operating Systems - Class 2 39

2007

Review of more C

UPPSALA
UNIVERSITET

Structures

m Equivalent of Java’s classes with only data (no
methods)

Example 6:
#include <stdio.h>

struct birthday{
int month;
int day;
int year;
¥ //Note the semi-colon

int main() {
struct birthday mybday; /7* - no “new” needed ! */
/* then, 1t’s just like Java ! */
mybday .day=1; mybday.month=1; mybday.year=1977;
printf(*“l was born on %d/%d/%d””, mybday.day,
mybday.month, mybday.year);

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

}

Thursday, September 6, Computer Systems/Operating Systems - Class 2 41
2007

UPPSALA
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

More on structures

struct person{
char name[41];
int age;
float height;
struct { /* embedded structure */
int month;
int day;
int year;
} birth;
}3

struct person me;
me.birth.year=1977;......

struct person class[60];
/* array of info about everyone in class */
class[0].name=*“Gun”’; class[0].birth.year=1971;....

Thursday, September 6, Computer Systems/Operating Systems - Class 2
2007

42

UPPSALA
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

typedef

m typedef struct person myPerson

» Defines a new type name as a
synonym for type

int main(){
myPerson me;
me.age = 6;

}

Thursday, September 6, Computer Systems/Operating Systems - Class 2
2007

43

o)
UPPSALA
UNIVERSITET

User-defined header files

m Structures and other data structures may
be defined in a header file, for better
organization of the code

m These are user-defined header files e.q.
person.h

m To include it:
#include “person.h”

at the start of the program file

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Thursday, September 6, Computer Systems/Operating Systems - Class 2 44
2007

o)
UPPSALA
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Command line arguments

m Accept inputs through the command line.
= main(int argc, char* argvl])

#* argc — argument count

= argv|[] — value of each argument

Thursday, September 6, Computer Systems/Operating Systems - Class 2 45
2007

UPPSALA
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Example 7

#include <stdio.h>

int
main(int argc, char *argvl[])
{
int count = O;
if(argc < 2){
printf(""Must enter at least one argument\n™);
printf("'Example: ./a.out this i1s program 7\n'");
exit(l);
+

printf("" The number of arguments is %d\n', argc);
printf(""And they are :-\n"");
while(count < argc){

printf(*'argv[%d]: %s\n',count,argvfcount]);

count++;
+
printf('\n");
return O;
+
Thursday, September 6, Computer Systems/Operating Systems - Class 2 46

2007

	Today’s class
	Finish computer system overview
	Instruction Execution
	Instruction Cycle
	Instruction Fetch and Execute
	Instruction Register
	Characteristics of a Hypothetical Machine
	Example of Program Execution
	Direct Memory Access (DMA)
	Interrupts
	Classes of Interrupts
	Program Flow of Control Without Interrupts
	Program Flow of Control With Interrupts, Short I/O Wait
	Program Flow of Control With Interrupts; Long I/O Wait
	Interrupt Handler
	Interrupts
	Interrupt Cycle
	Interrupt Cycle
	Timing Diagram Based on Short I/O Wait
	Timing Diagram Based on Long I/O Wait
	Simple Interrupt Processing
	Multiple Interrupts
	Multiple Interrupts
	Multiple Interrupts
	Multiprogramming
	Memory
	Memory Hierarchy
	Going Down the Hierarchy
	Secondary Memory
	Disk Cache
	Cache Memory
	Cache Memory
	Cache Memory
	Cache Read Operation
	Cache Data Modified
	I/O Communication Techniques
	Programmed I/O
	Interrupt-Driven I/O
	Direct Memory Access
	Review of more C
	Structures
	More on structures
	typedef
	User-defined header files
	Command line arguments
	Example 7

