
In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 10, 2007 Computer Systems/Operating Systems - Class 3 1

Today’s class
Review of more C
Operating system overview

Review of more C

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 10, 2007 Computer Systems/Operating Systems - Class 3 3

File handling
Open a file using “fopen”
Returns a file pointer which is used to access the file
Modes

Read(r) – error if file does not already exist. File pointer at the
beginning of file.
Write(w) – create a new file (overwrite old one). File pointer at
the beginning of file.
Append(a) – create a new file if file does not exist. Preserve the
contents if file does exist and pointer at the end of the file.

fprintf, fscanf, fclose

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 10, 2007 Computer Systems/Operating Systems - Class 3 4

Example 8
#include <stdio.h>

int
main(int argc, char *argv[])
{
FILE *inFile=NULL; /* Declare a file pointer */

inFile = fopen(“test.txt”, “w”); /* open file for writing*/

if(inFile == NULL){ /* need to do explicit ERROR CHECKING */
exit(1);

}
/* write some data into the file */
fprintf(inFile, “Hello there”);

/* don’t forget to release file pointer */
fclose(inFile);

return 0;
}

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 10, 2007 Computer Systems/Operating Systems - Class 3 5

Reading until end of file
int feof(FILE *) – The function is defined in stdio.h

Returns a non-zero value if end of file has been reached, and
zero otherwise.

Sample code:
fscanf(inFile, "%d", &int1); // Try to read
while (feof(inFile) == 0){ //If there is data, enter loop

printf("%d \n", int1); //Do something with the data
fscanf(inFile, "%d", &int1); //Try reading again

} //go back to while to test if data was read

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 10, 2007 Computer Systems/Operating Systems - Class 3 6

Functions – why and how
If a problem is large
Modularization –
easier to
• code
• debug

Code reuse

Passing arguments to
functions

By value
By reference

Returning values
from functions

By value
By reference

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 10, 2007 Computer Systems/Operating Systems - Class 3 7

Functions – basic example
Example 9

#include <stdio.h>
int sum(int a, int b);

/* function prototype at start of file */

int
main(int argc, char *argv[])
{

int total = sum(4,5); /* call to the function */

printf(“The sum of 4 and 5 is %d\n”, total);
}

int sum(int a, int b){ /* the function itself
- arguments passed by value*/

return (a+b); /* return by value */
}

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 10, 2007 Computer Systems/Operating Systems - Class 3 8

Memory layout and
addresses

int x = 5, y = 10;
float f = 12.5, g = 9.8;
char c = ‘r’, d = ‘s’;

5 10 12.5 9. 8 r s

x y f g c d

4300 4304 4308 4312 4316 4317

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 10, 2007 Computer Systems/Operating Systems - Class 3 9

Pointers made easy

float *f_addr; // pointer variable – holds an address to

// a float

float f; // data variable - holds a float

?
f

4300
?

f_addr

4304

NULL

f_addr = &f; // & = address operator

? 4300
f f_addr

4300 4304

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 10, 2007 Computer Systems/Operating Systems - Class 3 10

*f_addr = 3.2; // indirection operator or dereferencing

f f_addr

4300 4304

3.2 4300 3.2

g

4308

float g=*f_addr; // indirection: g is now 3.2

f = 1.3;

f f_addr

4300 4304

1.3 4300

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 10, 2007 Computer Systems/Operating Systems - Class 3 11

Pointer operations
Creation

int *ptr;

Pointer assignment/initialization
ptr = &i; (where i is an int and &i is the address
of i)
ptr = iPtr; (where iPtr is a pointer to an int)

Pointer indirection or dereferencing
i = *ptr; (i is an int and *ptr is the int value
pointed to by ptr)

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 10, 2007 Computer Systems/Operating Systems - Class 3 12

Example 10
#include <stdio.h>

int
main(int argc, char *argv[])
{

int j;
int *ptr;

ptr=&j; /* initialize ptr before using it */
/* *ptr=4 does NOT initialize ptr */

ptr=4; / j <- 4 */

j=*ptr+1; /* j <- ??? */

return 0;
}

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 10, 2007 Computer Systems/Operating Systems - Class 3 13

Pointers and arrays
intint p[10], *p[10], *ptrptr; // Both p and ; // Both p and ptrptr are pointers are pointers

// i.e. can hold addresses.// i.e. can hold addresses.
// p is already pointing to a // p is already pointing to a
// fixed location and cannot// fixed location and cannot
// be changed. // be changed. ptrptr is stillis still
// to be initialized.// to be initialized.

p[ip[i] is an] is an intint value.value.
p, &p, &p[ip[i] and (] and (p+ip+i) are addresses or pointers.) are addresses or pointers.
*p is the same as p[0] (They are both *p is the same as p[0] (They are both intint values)values)
((p+ip+i) is the same as) is the same as p[ip[i] (They are both] (They are both intint values)values)

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 10, 2007 Computer Systems/Operating Systems - Class 3 14

Pointer arithmetic
ptr = p; // or ptr = &p[0]

ptr +=2;

// ptr = ptr + 2 * sizeof(int) = ptr+8 bytes

// ptr = 3000 + 8 = 3008 => ptr = &(p[2]);

ERROR: p = ptr; because “p” is a constant
address, points to the beginning of a static
array.

Operating system overview

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 10, 2007 Computer Systems/Operating Systems - Class 3 16

Operating System
A program that controls the execution of
application programs
An interface between applications and
hardware

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 10, 2007 Computer Systems/Operating Systems - Class 3 17

Operating System Objectives
Convenience

Makes the computer more convenient to use
Efficiency

Allows computer system resources to be
used in an efficient manner

Ability to evolve
Permit effective development, testing, and
introduction of new system functions without
interfering with service

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 10, 2007 Computer Systems/Operating Systems - Class 3 18

Layers of Computer System

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 10, 2007 Computer Systems/Operating Systems - Class 3 19

Services Provided by the
Operating System

Program development
Editors and debuggers

Program execution
Access to I/O devices
Controlled access to files
System access

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 10, 2007 Computer Systems/Operating Systems - Class 3 20

Services Provided by the
Operating System

Error detection and response
Internal and external hardware errors

Memory error
Device failure

Software errors
Arithmetic overflow
Access forbidden memory locations

Operating system cannot grant request of
application

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 10, 2007 Computer Systems/Operating Systems - Class 3 21

Services Provided by the
Operating System

Accounting
Collect usage statistics
Monitor performance
Used to anticipate future enhancements
Used for billing purposes

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 10, 2007 Computer Systems/Operating Systems - Class 3 22

Operating System
Responsible for managing resources
Functions same way as ordinary
computer software

It is a program that is executed
Operating system relinquishes control of
the processor for other software to run
and depends on the processor to allow it
to regain control

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 10, 2007 Computer Systems/Operating Systems - Class 3 23

Memory

Computer System
I/O Devices

Operating
System

Software

Programs
and Data

Processor Processor

OS
Programs

Data

Storage

I/O Controller

I/O Controller

Printers,
keyboards,
digital camera,
etc.

I/O Controller

Figure 2.2 The Operating System as Resource Manager

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 10, 2007 Computer Systems/Operating Systems - Class 3 24

Kernel
Portion of operating system that is in main
memory
Contains most frequently used functions
Also called the nucleus

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 10, 2007 Computer Systems/Operating Systems - Class 3 25

Evolution of an Operating
System

Hardware upgrades plus new types of
hardware
New services
Fixes

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 10, 2007 Computer Systems/Operating Systems - Class 3 26

Memory Protection
User program executes in user mode

Certain instructions may not be executed
Monitor executes in system, or kernel,
mode

Privileged instructions are executed
Protected areas of memory may be accessed

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 10, 2007 Computer Systems/Operating Systems - Class 3 27

I/O Devices Slow

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 10, 2007 Computer Systems/Operating Systems - Class 3 28

Multiprogramming
When one job needs to wait for I/O, the
processor can switch to the other job

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 10, 2007 Computer Systems/Operating Systems - Class 3 29

Time Sharing
Using multiprogramming to handle
multiple interactive jobs
Processor’s time is shared among
multiple users
Multiple users simultaneously access the
system through terminals

	Today’s class
	Review of more C
	File handling
	Example 8
	Reading until end of file
	Functions – why and how
	Functions – basic example
	Memory layout and addresses
	Pointers made easy
	Pointer operations
	Example 10
	Pointers and arrays
	Pointer arithmetic
	Operating system overview
	Operating System
	Operating System Objectives
	Layers of Computer System
	Services Provided by the Operating System
	Services Provided by the Operating System
	Services Provided by the Operating System
	Operating System
	Kernel
	Evolution of an Operating System
	Memory Protection
	I/O Devices Slow
	Multiprogramming
	Time Sharing

