UPPSALA
UNIVERSITET

Today’s class

m Finish review of C
m Process description and control

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Tuesday, September 18, Computer Systems/Operating Systems - Class 6
2007

Finish review of C

g
UPPSALA
UNIVERSITET

Review In class exercise 3

m #1: game
cPtr 1s 5004
m #2: The value of c 1s 5000
The value of cPtr 1s 5000
0 1 2 3
The value of cPtr i1s 5016
m#3:.(a) *(ptr+2) = 25;
(b) ptr[2] = 25;

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Tuesday, September 18, Computer Systems/Operating Systems - Class 6
2007

UPPSALA
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Functions — Passing and
returning arrays

#include <stdio.h>
void 1nit _array(Int array[], Int size) ;

int
main(int argc, char *argv[])

{
int list[5];

init_array(list, 5);
for (i = 0; 1 <5; i++)
printf(“next:-%d”, list[i1]);
}

void 1nit _array(int array[], int size) { /* why size ? */
/* arrays ALWAYS passed by reference */
int 1;
for (1 = 0; 1 < size; 1++)
array[i] = O;
+

Tuesday, September 18, Computer Systems/Operating Systems - Class 6

2007

u
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Passing/returning a struct

/* pass struct by value */

void displayYear 1(struct birthday mybday) {
printf(*‘1 was born 1n %d\n”’, mybday.year);

} /* - 1nefficient: why ? */

/* pass pointer to struct */
void displayYear 2(struct birthday *pmybday) {
printf(*“l1 was born 1n %d\n”’, pmybday->year);
/* Note: “->7, not “.”, after a struct pointer*/

}

/* return struct by value */
struct birthday get bday(void){
struct birthday newbday;
newbday.year=1971; /* “.” after a struct */
return newbday;
} /* - also 1nefficient: why ? */
Tuesday, September 18, Computer Systems/Operating Systems - Class 6
2007

8 Input/output statements

m fprintf(stdout,”....”,...); - buffered output
» Equivalent to printf(“....”,...)
m fscanf(stdin,...);
» Equivalent to scanf(...)
m fprintf(stderr,”...”,...); - un-buffered output
» Use for error messages.
m perror(...);
» Use to print messages when system calls fall.

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

2007

Tuesday, September 18, Computer Systems/Operating Systems - Class 6 6 §

UPPSALA
UNIVERSITET

Storage classes

m Automatic (default for local variables)

» Value is retained and space is de-allocated only
when program (not function) quits.
* e.g. static Int 1,

k=)

% » Allocate memory only when function is executed
- » e.g.auto Int 1;

Ay .

[CTR = Static

2 » Allocate memory as soon as program execution
= begins

g » Scope Is local to the function that declares the
= variable.

=

Tuesday, September 18, Computer Systems/Operating Systems - Class 6
2007

UPPSALA
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Storage classes

m Register
» Direct compiler to place variable in a register
* €.0. register counter = 1;

m Extern

#» Default for function names.

» For a variable shared by two or more files:
= Int 1; //global variable 1In file 1
= extern int 1; //global 1n files 2, 3, ..,

» For a function shared by 2 or more files, place a
function prototype at the beginning of the files.

Tuesday, September 18, Computer Systems/Operating Systems - Class 6
2007

n

u
UNIVERSITET

enum — enumerated types

#include <stdio.h>
enum month{

E? JANUARY , /* like #define JANUARY O */
?5 FEBRUARY, /* like #define FEBRUARY 1 */
- MARCH /> .. */

4 -

0 BE

fd

(7)) _

(- In main:

f{®B chum month birthMonth;

ol i f(birthMonth = = JANUARY){.}

&

B /* alternatively, ... */

15 enum month{

— JANUARY=1, /* like #define JANUARY 1 */

MARCH=3, /* like #define MARCH 3 */
FEBRUARY=2, /> .. */
%‘ﬁesday, September 18, Computer Systems/Operating Systems - Class 6

2007

Process Description and
Control

Requirements of an
Operating System

UPPSALA
UNIVERSITET

m Interleave the execution of multiple
processes to maximize processor
utilization while providing reasonable
response time

m Allocate resources to processes

m Support interprocess communication and
user creation of processes

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Tuesday, September 18, Computer Systems/Operating Systems - Class 6 11
2007

UPPSALA
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Concepts

m Computer platform consists of a collection of
hardware resources

m Computer applications are developed to
perform some task

m Inefficient for applications to be written directly
for a given hardware platform

m Operating system provides a convenient to use,
feature rich, secure, and consistent interface for
applications to use

m OS provides a uniform, abstract representation
of resources that can be requested and
accessed by application

Tuesday, September 18, Computer Systems/Operating Systems - Class 6 12
2007

Manage Execution of
Applications

UPPSALA
UNIVERSITET

m Resources made available to multiple
applications

m Processor Is switched among multiple
applications

m The processor and I/O devices can be
used efficiently

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Tuesday, September 18, Computer Systems/Operating Systems - Class 6
2007

13

o)
UPPSALA
UNIVERSITET

Process

m A program In execution

m An Instance of a program running on a
computer

m The entity that can be assigned to and
executed on a processor

m A unit of activity characterized by the :
execution of a sequence of instructions, a :
current state, and an associated set of :
system resources

Tuesday, September 18, Computer Systems/Operating Systems - Class 6 14
2007

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

o)
UPPSALA
UNIVERSITET

Process Elements

m |dentifier

m State

= Priority

m Program counter

m Memory pointers

m Context data

m |/O status information
m Accounting information

Tuesday, September 18, Computer Systems/Operating Systems - Class 6 15
2007

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

u LA
UNIVERSITET

Process Control Block

Identifier
=3 = Contains the process p—
O
B e I e m e ntS Program counter
(- Memory pointers
%] Created and Context data
*Q‘ managed by the s
O operating system Accounting
o information
B = Allows support for
ke multiple processes
-

Figure 3.1 Simplified Process Control Block
Tuesday, September 18, Computer Systems/Operating Systems - Class 6
2007

16

UPPSALA
UNIVERSITET

Example Execution

Address Main Memory Program Counter
0 [8000 ¢ |
100
fp— Dispatcher
@)
6 5000
Process A
-
4
(D) 8000
e
)
C Process B
% 12000
E Process C
| -
h
C

Figure 3.2 Snapshot of Example Execution (Figure 3.4)
at Instruction Cycle 13

Tuesday, September 18, Computer Systems/Operating Systems - Class 6 17
2007

UPPSALA
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Trace of Processes

5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011

(a) Trace of Process A

8000
3001
3002
3003

(b) Trace of Process B

12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011

(c) Trace of Process C

5000 = Starting address of program of Process A
B000 = Starting address of program of Process B
12000 = Starting address of program of Process C

Figure 3.3 Traces of Processes of Figure 3.2

Tuesday, September 18,

2007

Computer Systems/Operating Systems - Class 6

18

1 5000 27 12004
2 5001 28 12005
3 5002 e Time out
4 5003 28 100
UPPSALA ; 00 N 103
] 5005 31 102
UNIVERSITET | Time out 32 103
7 100 33 104
8 101 34 105
Q 102 35 5006
10 103 36 007
11 104 37 5008
" — 12 105 3& 5009
(@)) 13 8000 30 5010
o 14 8001 40 5011
~ 15 8002 s Time out
(@) 16 8003 41 100
--------------- 1/O request 42 101
§ 17 100 : 43 102
18 101 44 103
E 19 102 45 104
20 103 46 105
(f) 21 104 47 12006
- 22 105 48 12007
O 23 12000 49 12008
" — 24 12001 50 12009
+— 25 12002 51 12010
® 26 12003 52 12011
E ------------------ Time out
—
‘-I9 100 = Starting address of dispatcher program
E shaded areas indicate execution of dispatcher process;

firzt and third columnz count instmetion oycles;
zzcond and fourth columns show addrezs of instruction being exscuted

Figure 3.4 Combined Trace of Processes of Figure 3.2

Tuesday, September 18, Computer Systems/Operating Systems - Class 6 19
2007

UPPSALA
UNIVERSITET

Two-State Process Model

m Process may be in one of two states
» Running
» Not-running

Dvispatch

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Enter Mot Exit
- Running Running -
Pause
(a) State transition diagram
Tuesday, September 18, Computer Systems/Operating Systems - Class 6 20

2007

“ g Not-Running Processes in a
Queue

UNIVERSITET
Queue
Enter] Dispatch Exit
- [Processor -
L

Pause

(b) Queuning diagram

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Tuesday, September 18, Computer Systems/Operating Systems - Class 6 21
2007

UPPSALA
UNIVERSITET

Process Creation

Table 3.1 Reasons for Process Creation

MNew batch job The operating system is provided with a batch job control
stream_ usually on tape or disk. When the operating svystem
is prepared to take on new work, it will read the next
sequence of job control commands.

Interactive logon A user at a terminal logs on to the system.
Created by OS to provide a service The operating system can create a process to perform a
function on behalf of a user program. without the user

having to wait (e.g.. a process to control printing).

Spawned by existing process For purposes of modularitv or to exploit parallelism, a user
program can dictate the creation of a number of processes.

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Tuesday, September 18, Computer Systems/Operating Systems - Class 6 22
2007

UPPSALA
UNIVERSITET

Process Termination

Table 3.2 Reasons for Process Termination

Normal completion The process executes an O5 service call to indicate that it has
completed running.

Time limit exceeded The process has run longer than the specified total time limit.
There are a number of possibilities for the tvpe of time that is
measwred. These include total elapsed time ("wall clock time™"),
amount of time spent executing, and, in the case of an interactive
process, the amount of time since the user last provided any input.

Memory unavailable The process requires more memory than the system can provide.

Bounds violation The process tries to access a memory location that it is not allowed
to access.

Protection error The process attempts to use a resource such as a file that it is not

allowed to use, or it tries to use it in an improper fashion, such as
writing to a read-only file.

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Arithmetic error The process tries a prohibited computation, such as division by
zero, or tries to store numbers larger than the hardware can
accommodate.

Tuesday, September 18, Computer Systems/Operating Systems - Class 6

2007

23

UPPSALA
UNIVERSITET

Process Termination

Table 3.2 Reasons for Process Termination

Time overrun The process has waited longer than a specified maximum for a
certain event to occur.

/O failure An error occurs during input or output, such as inability to find a
file, failure to read or write after a specified maximum number of
tries (when, for example, a defective area is encountered on a
tape), or invalid operation (such as reading from the line printer).

Inwalid instruction The process attempts to execute a nonexistent instruction (often a
result of branching into a data area and attempting to execute the
data).

Privileged instruction The process attempts to use an instruction reserved for the

operating system.
Data misuse A piece of data is of the wrong tvpe or is not initialized.

Orperator or OS intervention For some reason, the operator or the operating system has
terminated the process (for example, if a deadlock exists).

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Parent termination When a parent terminates, the operating system may automatically
terminate all of the offspring of that parent.

Parent request A parent process fypically has the authority to terminate any of its offspring.

Tuesday, September 18, Computer Systems/Operating Systems - Class 6 24
2007

o)
UPPSALA
UNIVERSITET

Processes

m Not-running
» ready to execute
m Blocked
» waiting for 1/O
m Dispatcher cannot just select the process

that has been in the queue the longest
because it may be blocked

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Tuesday, September 18, Computer Systems/Operating Systems - Class 6 25
2007

UPPSALA

&l A\ Five-State Model

m Running
m Ready
m Blocked
= New

m Exit

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

2007

Tuesday, September 18,

Computer Systems/Operating Systems - Class 6

26

UPPSALA
UNIVERSITET

Five-State Process Model

Dispatch

Admit —_— 4 Release _
New —_— Ready Running — Exit
-
Timeout
A

Event
Oceurs

Blocked

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Figure 3.6 Five-State Process Model

Tuesday, September 18, Computer Systems/Operating Systems - Class 6
2007

27

UPPSALA
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

2007

Using Two Queues

Tuesday, September 18,

Ready Queune Release
Admit Dispatch
Timeout
Blocked Queune
Event - Event Wait
Occurs

(a) Single blocked queune

Computer Systems/Operating Systems - Class 6

28

UPPSALA

Bl Multiple Blocked Qu

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

2007

D

UES

-

Ready Queue Release
Admit Dispatch
- -1 Processor
A
Timeout
-
Event 1 Queue Event 1 Wait
ven ai
Event 1 . -
Occurs
Event 2 Queue .
Event 2 - Event 2 Wait
Occurs
L J
®
Event n Queue
Event n Wait
Event n - vent n Wai
Occurs

Tuesday, September 18,

(b) Multiple blocked queues
Computer Systems/Operating Systems - Class 6

%t 3
Fre S
UPPSALA

UNIVERSITET

Suspended Processes

m Processor Is faster than 1/O so all

[=
= processes could be waiting for 1/0
- .
- ® Swap these processes to disk to free up
2 more memory
-% m Blocked state becomes suspend state
= when swapped to disk
=8 ® Two new states
B * Blocked/Suspend
» Ready/Suspend

Tuesday, September 18, Computer Systems/Operating Systems - Class 6 30
2007

UPPSALA
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Two Suspend States

MNew
£
AN s
L
i S
L Ko
T e =A==~ =~=2%eng
- = .
A Activate ‘ Dispatch ™~
Ready/ ————— —_— . Release : -
Suspend Timeout
- - i
A Ak
= =
Activate

Blocked! ————————f
Suspend g Blocked
Suspend

(b) With Two Suspend States

Figure 3.9 Process State Transition Diagram with Suspend States

Tuesday, September 18, Computer Systems/Operating Systems - Class 6
2007

31

UPPSALA
UNIVERSITET

Suspension

Table 3.2

Reasons for Process

Reasons for Process Suspension

Swapping

Other OS5 reason

Interactive user request

Timing

Parent process request

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

The operating svstem needs to release sufficient main
memory to bring in a process that is ready to execute.

The operating svstem mayv suspend a background or utility
process or a process that is suspected of causing a problem.

A user may wish to suspend execution of a program for
purposes of debugging or in connection with the use of a
resource.

A process mayv be executed periodically (e.g.. an
accounting or system monitoring process) and mav be
suspended while waiting for the next time interval.

A parent process may wish to suspend execution of a
descendent to examine or modify the suspended process, or
to coordinate the activity of various descendents.

2007

Tuesday, September 18, Computer Systems/Operating Systems - Class 6 32

UPPSALA
UNIVERSITET

Processes and Resources

Virtual
Memory

Computer
Resources

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Figure 3.10 Processes and Resources (resource allocation at one snapshot in time)

Tuesday, September 18, Computer Systems/Operating Systems - Class 6 33
2007

Operating System Control
Structures

UPPSALA
UNIVERSITET

m Information about the current status of

=

=8 each process and resource g
C _
4 ® Tables are constructed for each entity the
0 operating system manages =
-% * Memory

= » Devices

2 » Files

-

— #* Processes

Tuesday, September 18, Computer Systems/Operating Systems - Class 6 34
2007

g
UPPSALA
UNIVERSITET

Memory Tables

m Allocation of main memory to processes

m Allocation of secondary (virtual) memory
to processes

m Protection attributes for access to shared
memory regions

m Information needed to manage virtual
memory

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Tuesday, September 18, Computer Systems/Operating Systems - Class 6 35
2007

UPPSALA

N /O Tables

m |/O device Is avallable or assigned
m Status of I/O operation

m Location in main memory being used as
the source or destination of the I/O
transfer

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Tuesday, September 18, Computer Systems/Operating Systems - Class 6 36
2007

UPPSALA

sl File Tables

m Existence of files

m Location on secondary memory
m Current status

m Attributes

m Sometimes this information is maintained
by a file management system

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Tuesday, September 18, Computer Systems/Operating Systems - Class 6 37
2007

%t 3
o)
kg

UPPSALA

UNIVERSITET

Process Table

> Where process Iis located
[l = Attributes in the process control block
4
% #* Program
_5 » Data
© » Stack
=
O
<
Tuesday, September 18, Computer Systems/Operating Systems - Class 6 38

2007

UPPSALA
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Process Image

Table 3.4 Typical Elements of a Process Image

User Data
The modifiable part of the user space. May include program data. a user stack area, and
programs that may be modified.

User Program
The program to be executed.

Svstem Stack
Each process has one or more last-in-first-out (LIFQ) system stacks associated with it. A
stack is used to store parameters and calling addresses for procedure and svstem calls.

Process Control Block
Data needed bv the operating svstem to control the process (see Table 3.5).

Tuesday, September 18, Computer Systems/Operating Systems - Class 6
2007

39

UPPSALA
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Process Control Block

m Process identification

#» |dentifiers

= Numeric identifiers that may be stored with the
process control block include
* |dentifier of this process

« |dentifier of the process that created this process
(parent process)

e User identifier

Tuesday, September 18, Computer Systems/Operating Systems - Class 6
2007

40

UPPSALA
UNIVERSITET

Process Control Block

m Processor State Information

» User-Visible Registers

= A user-visible register is one that may be
referenced by means of the machine language
that the processor executes while in user mode.
Typically, there are from 8 to 32 of these
registers, although some RISC implementations
have over 100.

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Tuesday, September 18, Computer Systems/Operating Systems - Class 6 41
2007

u
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Process Control Block

m Processor State Information

» Control and Status Registers

= These are a variety of processor registers that are
employed to control the operation of the
processor. These include

* Program counter: Contains the address of the next
Instruction to be fetched

e Condition codes: Result of the most recent arithmetic or
logical operation (e.g., sign, zero, carry, equal, overflow)

« Status information: Includes interrupt enabled/disabled
flags, execution mode

Tuesday, September 18, Computer Systems/Operating Systems - Class 6 42
2007

UPPSALA
UNIVERSITET

Process Control Block

m Processor State Information

#» Stack Pointers

= Each process has one or more last-in-first-out g
(LIFO) system stacks associated with it. A stack is :
used to store parameters and calling addresses
for procedure and system calls. The stack pointer
points to the top of the stack.

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Tuesday, September 18, Computer Systems/Operating Systems - Class 6 43
2007

UPPSALA
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Process Control Block

m Process Control Information

» Scheduling and State Information

=This is information that is needed by the operating system to
perform its scheduling function. Typical items of information:

* Process state: defines the readiness of the process to be
scheduled for execution (e.g., running, ready, waiting,
halted).

 Priority: One or more fields may be used to describe the
scheduling priority of the process. In some systems, several
values are required (e.g., default, current, highest-allowable)

» Scheduling-related information: This will depend on the
scheduling algorithm used. Examples are the amount of
time that the process has been waiting and the amount of
time that the process executed the last time it was running.

» Event: Identity of event the process is awaiting before it can
be resumed

Tuesday, September 18, Computer Systems/Operating Systems - Class 6 44
2007

UPPSALA
UNIVERSITET

Process Control Block

m Process Control Information

» Data Structuring

= A process may be linked to other process in a
gueue, ring, or some other structure. For
example, all processes in a waiting state for a
particular priority level may be linked in a queue.
A process may exhibit a parent-child (creator-
created) relationship with another process. The
process control block may contain pointers to
other processes to support these structures.

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Tuesday, September 18, Computer Systems/Operating Systems - Class 6 45
2007

UPPSALA
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Process Control Block

m Process Control Information

» [nterprocess Communication

= Various flags, signals, and messages may be associated
with communication between two independent processes.
Some or all of this information may be maintained in the
process control block.

» Process Privileges

= Processes are granted privileges in terms of the memory
that may be accessed and the types of instructions that may
be executed. In addition, privileges may apply to the use of
system utilities and services.

Tuesday, September 18, Computer Systems/Operating Systems - Class 6 46
2007

UPPSALA
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Process Control Block

m Process Control Information

* Memory Management

= This section may include pointers to segment and/or page
tables that describe the virtual memory assigned to this
process.

» Resource Ownership and Utilization

= Resources controlled by the process may be indicated, such
as opened files. A history of utilization of the processor or
other resources may also be included; this information may
be needed by the scheduler.

Tuesday, September 18, Computer Systems/Operating Systems - Class 6 47
2007

o)
UPPSALA
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Processor State Information

m Contents of processor registers
» User-visible registers
» Control and status registers
» Stack pointers

m Program status word (PSW)
#* contains status information

» Example: the EFLAGS register on Pentium
machines

Tuesday, September 18, Computer Systems/Operating Systems - Class 6
2007

48

UPPSALA

Bl Pentium || EFLAGS Register

Tuesday, September 18,
2007

(@)
(@) 1 1 16 /15)]
i I|Y|YIA|IVIR NIIO |ODI|T|S|Z A C
8 D|el|elc|m|F| |T| PL |F|F|F|F|F|F| |F F
4
_IG_J‘ 1D = Identification flag DF = Direction flag
(7)) VIP = Virtual interrupt pending IF = Interrupt enable flag
(- VIF = WVirtual interrupt flag TF = Trap flag
@) AC = Alignment check SF = Sign flag
. — VM = Virtual 3086 mode ZF = Zero flag
"C_G' RF = Resume flag AF = Auxiliary carry flag
NT = Nested task flag PF = Parity flag
E I0OPL = /O privilege level CF = Carry flag
— OF = Overflow flag
2
-

Figure 3.12 Pentium Il EFLAGS Register

Computer Systems/Operating Systems - Class 6

49

o)
UPPSALA
UNIVERSITET

Modes of Execution

m User mode
Less-privileged mode g
» User programs typically execute in this mode
= System mode, control mode, or kernel
mode
» More-privileged mode
» Kernel of the operating system

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Tuesday, September 18, Computer Systems/Operating Systems - Class 6 50
2007

g
UPPSALA
UNIVERSITET

Process Creation

m AssSIgn a unigue process identifier
m Allocate space for the process
m [nitialize process control block

m Set up appropriate linkages

» EX: add new process to linked list used for
scheduling queue

m Create of expand other data structures
#» EX. maintain an accounting file

Tuesday, September 18, Computer Systems/Operating Systems - Class 6 51
2007

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

UPPSALA
UNIVERSITET

When to Switch a Process

m Clock interrupt

process has executed for the maximum
allowable time slice

m |/O Iinterrupt

m Memory fault

* memory address is in virtual memory so it
must be brought into main memory

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Tuesday, September 18, Computer Systems/Operating Systems - Class 6 52
2007

UPPSALA
UNIVERSITET

When to Switch a Process

m[rap
* error or exception occurred
#* may cause process to be moved to Exit state

m Supervisor call
such as file open

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Tuesday, September 18, Computer Systems/Operating Systems - Class 6 53
2007

o)
UPPSALA
UNIVERSITET

Change of Process State

m Save context of processor including
orogram counter and other registers

m Update the process control block of the

process that is currently in the running
state

= Move process control block to appropriate -
queue — ready; blocked; ready/suspend

m Select another process for execution

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Tuesday, September 18, Computer Systems/Operating Systems - Class 6 54
2007

o)
UPPSALA
UNIVERSITET

Change of Process State

m Update the process control block of the
orocess selected

m Update memory-management data
structures

m Restore context of the selected process

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Tuesday, September 18, Computer Systems/Operating Systems - Class 6 55
2007

UPPSALA

B UNIX Process States

Table 3.9 TUNIX Process States

User Running
Kernel Running
Ready to Run, in Memory

Asleep in Memory

Ready to Run, Swapped

Sleeping, Swapped

Preempted

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Created

Zombie

Executing in user mode.
Executing in kernel mode.
Ready to run as soon as the kernel schedules it

Unable to execute until an event occurs; process is in main memory
(a blocked state)).

Process is ready to run, but the swapper must swap the process into
main memory before the kernel can schedule it to execute.

The process is awaiting an event and has been swapped to
secondary storage (a blocked state).

Process is returning from kernel to user mode, but the kernel
preempts it and does a process switch to schedule another process.

Process is newly created and not vet ready to run.

Process no longer exists, but it leaves a record for its parent process
to collect.

Tuesday, September 18,
2007

Computer Systems/Operating Systems - Class 6

56

fork

UPPSALA l
UNIVERSITET

Created
Preempied
return . enough not enough memory

" to user A ~ memory (swapping system only)

(@) .

@ s
e LUser ™.

O Running preempt o

C swap out >

return Ready to Run Ready to Run
! reschedule -+
q) ‘y In Memory swap in Swapped
system call,

i interrupt Kernel & ry

m Running

-
; interrupt. deep wakeup wakeup

CG interrupt return extt

by swap out -

O Zombe Memory > Svapped
%

-

Figure 3.17 UNIX Process State Transition Diagram
Tuesday, September 18, Computer Systems/Operating Systems - Class 6

2007

57

	Today’s class
	Finish review of C
	Review in class exercise 3
	Functions – Passing and returning arrays
	Passing/returning a struct
	Input/output statements
	Storage classes
	Storage classes
	enum – enumerated types
	Process Description and Control
	Requirements of an�Operating System
	Concepts
	Manage Execution of Applications
	Process
	Process Elements
	Process Control Block
	Example Execution
	Trace of Processes
	Two-State Process Model
	Not-Running Processes in a Queue
	Process Creation
	Process Termination
	Process Termination
	Processes
	A Five-State Model
	Five-State Process Model
	Using Two Queues
	Multiple Blocked Queues
	Suspended Processes
	Two Suspend States
	Reasons for Process Suspension
	Processes and Resources
	Operating System Control Structures
	Memory Tables
	I/O Tables
	File Tables
	Process Table
	Process Image
	Process Control Block
	Process Control Block
	Process Control Block
	Process Control Block
	Process Control Block
	Process Control Block
	Process Control Block
	Process Control Block
	Processor State Information
	Pentium II EFLAGS Register
	Modes of Execution
	Process Creation
	When to Switch a Process
	When to Switch a Process
	Change of Process State
	Change of Process State
	UNIX Process States

