
In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 1

Today’s class
Threads, SMP, and Microkernels
Principles of concurrency

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 2

Process
Resource ownership - process includes a
virtual address space to hold the process
image
Scheduling/execution- follows an
execution path that may be interleaved
with other processes
These two characteristics are treated
independently by the operating system

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 3

Process
Dispatching is referred to as a thread or
lightweight process
Resource ownership is referred to as a
process or task

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 4

Multithreading
Operating system supports multiple
threads of execution within a single
process
UNIX supports multiple user processes
but only supports one thread per process
Windows, Solaris, Linux, Mach, and OS/2
support multiple threads

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 5

Process
In a multithreaded environment a process
is defined as the unit of resource
allocation and a unit of protection
Have a virtual address space which holds
the process image
Protected access to processors, other
processes, files, and I/O resources

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 6

Thread
An execution state (running, ready, etc.)
A saved thread context when not running
An execution stack
Some per-thread static storage for local
variables
Access to the memory and resources of
its process

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 7

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 8

Benefits of Threads
Takes less time to create a new thread than a
process
Less time to terminate a thread than a process
Less time to switch between two threads within
the same process
Since threads within the same process share
memory and files, they can communicate with
each other without invoking the kernel

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 9

Uses of Threads in a Single-
User Multiprocessing System

Foreground to background work
Asynchronous processing
Speed of execution
Modular program structure

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 10

Threads
Suspending a process involves
suspending all threads of the process
since all threads share the same address
space
Termination of a process, terminates all
threads within the process

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 11

Thread States
Key thread states are Running, Ready, and
Blocked
Operations associated with a change in thread
state

Spawn
Block
Unblock
Finish

Deallocate register context and stacks

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 12

Remote Procedure Call Using
Single Thread

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 13

Remote Procedure Call Using
Threads

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 14

Multithreading

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 15

User-Level Threads
All thread management is done by the
application
The kernel is not aware of the existence
of threads

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 16

User-Level Threads

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 17

Kernel-Level Threads
Windows is an example of this approach
Kernel maintains context information for
the process and the threads
Scheduling is done on a thread basis

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 18

Kernel-Level Threads

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 19

Combined Approaches
Example is Solaris
Thread creation done in the user space
Bulk of scheduling and synchronization of
threads within application

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 20

Combined Approaches

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 21

Categories of Computer
Systems

Single Instruction Single Data (SISD)
stream

Single processor executes a single
instruction stream to operate on data stored
in a single memory

Single Instruction Multiple Data (SIMD)
stream

Each instruction is executed on a different
set of data by the different processors

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 22

Categories of Computer
Systems

Multiple Instruction Single Data (MISD) stream
A sequence of data is transmitted to a set of
processors, each of which executes a different
instruction sequence. Never implemented

Multiple Instruction Multiple Data (MIMD)
A set of processors simultaneously execute different
instruction sequences on different data sets

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 23

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 24

Symmetric Multiprocessing
Kernel can execute on any processor
Typically each processor does self-
scheduling form the pool of available
process or threads

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 25

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 26

Multiprocessor Operating
System Design
Considerations
Simultaneous concurrent processes or threads

Kernel routines need to be re-entrant, to allow
several processors to execute the same kernel code
simultaneously

Scheduling
May be performed by any processor, so conflicts
must be avoided

Synchronization
Memory management
Reliability and fault tolerance

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 27

Microkernels
Small operating system core
Contains only essential core operating systems
functions
Many services traditionally included in the
operating system are now external subsystems

Device drivers
File systems
Virtual memory manager
Windowing system
Security services

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 28

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 29

Benefits of a Microkernel
Organization

Uniform interface on request made by a
process

Don’t distinguish between kernel-level and user-level
services
All services are provided by means of message
passing

Extensibility
Allows the addition of new services

Flexibility
New features added
Existing features can be subtracted

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 30

Benefits of a Microkernel
Organization

Portability
Changes needed to port the system to a new
processor are changed in the microkernel -
not in the other services

Reliability
Modular design
Small microkernel can be rigorously tested

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 31

Benefits of Microkernel
Organization

Distributed system support
Message are sent without knowing what the
target machine is

Object-oriented operating system
Components are objects with clearly defined
interfaces that can be interconnected to form
software

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 32

Microkernel Design
Low-level memory management

Mapping each virtual page to a physical page frame

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 33

Microkernel Design
Interprocess communication

Basic mechanism is a message
A port is a queue of messages destined for a
particular process

I/O and interrupt management
Hardware interrupts handled as messages
I/O ports included in address space

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 34

Windows Processes
Implemented as objects
An executable process may contain one
or more threads
Both processes and thread objects have
built-in synchronization capabilities

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 35

Windows Process Object

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 36

Windows
Thread Object

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 37

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 38

Linux Task Data Structure
State
Scheduling information
Identifiers
Interprocess communication
Links
Times and timers
File system
Address space
Processor-specific context

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 39

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 40

Concurrency
Multiple applications

Multiprogramming
Structured application

Application can be a set of concurrent
processes

Operating-system structure
Operating system is a set of processes or
threads

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 41

Concurrency

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 42

Difficulties of Concurrency
Sharing of global resources
Operating system managing the allocation
of resources optimally
Difficult to locate programming errors

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 43

A Simple Example
void echo()
{
chin = getchar();
chout = chin;
putchar(chout);

}

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 44

A Simple Example
Process P1 Process P2
. .
chin = getchar(); .
. chin = getchar();
chout = chin; chout = chin;
putchar(chout); .
. putchar(chout);
. .

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 45

Race Condition
A race condition occurs when multiple
processes or threads read and write data
items so that the final result depends on
the order of execution of instructions in
the multiple processes or threads.

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 46

Operating System Concerns
Keep track of various processes
Allocate and deallocate resources

Processor time
Memory
Files
I/O devices

Protect data and resources
Output of process must be independent of the
speed of execution of other concurrent
processes

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 47

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 48

Competition Among
Processes for Resources

Mutual Exclusion
Critical sections

Only one program at a time is allowed in its critical
section
Example only one process at a time is allowed to
send command to the printer

Deadlock
Starvation

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 49

Requirements for Mutual
Exclusion

Only one process at a time is allowed in
the critical section for a resource
A process that halts in its noncritical
section must do so without interfering with
other processes
No deadlock or starvation

In
fo

rm
at

io
ns

te
kn

ol
og

i

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 50

Requirements for Mutual
Exclusion

A process must not be delayed access to
a critical section when there is no other
process using it
No assumptions are made about relative
process speeds or number of processes
A process remains inside its critical
section for a finite time only

	Today’s class
	Process
	Process
	Multithreading
	Process
	Thread
	Benefits of Threads
	Uses of Threads in a Single-User Multiprocessing System
	Threads
	Thread States
	Remote Procedure Call Using Single Thread
	Remote Procedure Call Using Threads
	Multithreading
	User-Level Threads
	User-Level Threads
	Kernel-Level Threads
	Kernel-Level Threads
	Combined Approaches
	Combined Approaches
	Categories of Computer Systems
	Categories of Computer Systems
	Symmetric Multiprocessing
	Multiprocessor Operating System Design Considerations
	Microkernels
	Benefits of a Microkernel Organization
	Benefits of a Microkernel Organization
	Benefits of Microkernel Organization
	Microkernel Design
	Microkernel Design
	Windows Processes
	Windows Process Object
	Windows Thread Object
	Linux Task Data Structure
	Concurrency
	Concurrency
	Difficulties of Concurrency
	A Simple Example
	A Simple Example
	Race Condition
	Operating System Concerns
	Competition Among Processes for Resources
	Requirements for Mutual Exclusion
	Requirements for Mutual Exclusion

