UPPSALA
UNIVERSITET

Today’s class

m Threads, SMP, and Microkernels
m Principles of concurrency

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8

o)
UPPSALA
UNIVERSITET

Process

m Resource ownership - process includes a
virtual address space to hold the process
Image

m Scheduling/execution- follows an

execution path that may be interleaved
with other processes

m These two characteristics are treated
iIndependently by the operating system

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 2

g
UPPSALA
UNIVERSITET

Process

m Dispatching Is referred to as a thread or
lightweight process

m Resource ownership is referred to as a
process or task

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8

UPPSALA
UNIVERSITET

Multithreading

m Operating system supports multiple
threads of execution within a single
Drocess

UNIX supports multiple user processes

out only supports one thread per process -

= Windows, Solaris, Linux, Mach, and OS/2 -
support multiple threads

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 4

o)
UPPSALA
UNIVERSITET

Process

m [n a multithreaded environment a process
IS defined as the unit of resource
allocation and a unit of protection

m Have a virtual address space which holds
the process image :

m Protected access to processors, other
processes, files, and I/O resources

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 5

UPPSALA

e [hread

m An execution state (running, ready, etc.)
m A saved thread context when not running
m An execution stack

m Some per-thread static storage for local
variables

m Access to the memory and resources of
Its process

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 6

UPPSALA

UNIVERSITET Single-Threaded
Process Model
Process User
Control Stack
Block
User Kernel
Address Stack
Space

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Monday, September 24, 2007

Multithreaded
Process Model
ooctpees o g Dol
:Ihread::rhreml:mread:
/| Control || || Control || || Control |!
| Block |; ! Block || !| Block |j
| ! ! |
i | I | | |
Process | || User : || User : || User :
Control | ! Stack || | Stack || | Stack ||
Block : : : : : :
i I I |
| o L :
User : Kernel | : Kernel | : Kernel |
Address | !| Stack |j I| Stack |; !| Stack |
Space || | | i
e 1 === 1 == === -

Figure 4.2 Single Threaded and Multithreaded Process Models

Computer Systems/Operating Systems - Class 8

UPPSALA
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Benefits of Threads

m [akes less time to create a new thread than a
Drocess

m Less time to terminate a thread than a process

m Less time to switch between two threads within
the same process

m Since threads within the same process share
memory and files, they can communicate with
each other without invoking the kernel

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 8

- J Uses of Threads In a Single-
i User Multiprocessing System

m Foreground to background work
m Asynchronous processing

m Speed of execution

m Modular program structure

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 9 ;

UPPSALA

B [hreads

m Suspending a process involves
suspending all threads of the process
since all threads share the same address
space

m Termination of a process, terminates all
threads within the process

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 10

UPPSALA
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Thread States

m Key thread states are Running, Ready, and
Blocked

m Operations associated with a change in thread
Sstate
* Spawn
» Block
» Unblock
#* Finish
= Deallocate register context and stacks

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 11

AT
e
S
UPPSALA
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Remote Procedure Call Using
Single Thread

Time L
RFPC RPC
Request Request

C T TS C T NTTS

Process 1

(a) RFC Using Single Thread

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 12

UPPSALA
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Remote Procedure Call Using
Threads

RPC
Request

Thread A (Procvess 1) i

Thread B (Process 1) VTP

RPC

Request @

(b)) RPC Using One Thread per Server (on a uniprocessor)

A Blocked., waiting for response to RPC
[Blocked. waiting for processor, which is in use by Thread B
B Running

Figure 4.3 Remote Procedure Call (RPC) Using Threads

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8

13

UPPSALA
UNIVERSITET

Multithreading

Time -

I Request Time quanium
request compete expires

Thread A (Process 1) % .

Thread B (Process 1) [.

/ﬂ

Thread C (Process 2) Time quantum (I
expires f
Process
createid
BSSSId Blocked 1 Ready BN RHunning

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Figure 4.4 Multithreading Example on a Uniprocessor

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8

g
UPPSALA
UNIVERSITET

User-Level Threads

m All thread management is done by the
application

m The kernel Is not aware of the existence
of threads

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 15

UPPSALA
UNIVERSITET

User-Level Threads

SR
|/

Threads \J User
Library Space
Kernel

®)

S pace
Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

16

g
UPPSALA
UNIVERSITET

Kernel-Level Threads

m Windows is an example of this approach

m Kernel maintains context information for
the process and the threads

m Scheduling Is done on a thread basis

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 17

UPPSALA
UNIVERSITET

Kernel-Level Threads

User
Space

Kernel
Space

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

(b)) Pure kernel-level

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8

18

UPP SALA
UNIVERSITET

Combined Approaches

m Example Is Solaris
m Thread creation done In the user space

m Bulk of scheduling and synchronization of _
threads within application :

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 19

UPPSALA
UNIVERSITET

Threads User
Library Space

Kernel
Space

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

(¢} Combined

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8

Categories of Computer
Systems

UPPSALA
UNIVERSITET

m Single Instruction Single Data (SISD)
stream

Single processor executes a single
Instruction stream to operate on data stored
In a single memory

m Single Instruction Multiple Data (SIMD)
stream

» Each instruction Is executed on a different
set of data by the different processors

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 21

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Categories of Computer
Systems

UPPSALA
UNIVERSITET

m Multiple Instruction Single Data (MISD) stream

#* A sequence of data is transmitted to a set of
processors, each of which executes a different
Instruction sequence. Never implemented

= Multiple Instruction Multiple Data (MIMD)

» A set of processors simultaneously execute different
Instruction sequences on different data sets

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 22

e
UPPSALA
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Parallel Processor

T

SIMD
(single instruction
multiple data stream)

MIMD

(multiple instruction
multiple data stream)

T

Shared-Memory Distributed-Memory
(tightly coupled) (loosely coupled)
Master/Slave Symmetric Clusters
Multiprocessors
(SMP)

Figure 4.8 Parallel Processor Architectures

Monday, September 24, 2007

Computer Systems/Operating Systems - Class 8

23

o)
UPPSALA
UNIVERSITET

Symmetric Multiprocessing

m Kernel can execute on any processor

m Typically each processor does self-
scheduling form the pool of available
process or threads

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 24

UPPSALA
UNIVERSITET

Processor Processor

L1 Cache

L.Z Cache

Main
Memory

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

System Bus

o
Subsystem

Processor

L1 Cache

1.2 Cache

S

Adapter

Figure 4.9 Symmetric Multiprocessor Organization

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8

25

Ml Multiprocessor Operating
g System Design
Considerations

m Simultaneous concurrent processes or threads

» Kernel routines need to be re-entrant, to allow
several processors to execute the same kernel code
simultaneously

m Scheduling

» May be performed by any processor, so conflicts
must be avoided

m Synchronization
m Memory management
m Reliability and fault tolerance

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 26

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

UPPSALA
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Microkernels

m Small operating system core

m Contains only essential core operating systems
functions

m Many services traditionally included in the
operating system are now external subsystems
» Device drivers
» File systems
» Virtual memory manager
» Windowing system
#* Security services

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 27

UP
UNIVERSITET

User
Maode

Kernel
Maode

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

/ r C d p
Users 1 e | | r
i ¥ i i
e i I C
i n C e
File System t e X
Interprocess Communication User -< p d | ®)
Mode r r f 5
0 i e
I/O and Device Management E : : :
5 r r e
Virtual Memory 5 5 r
. Kernel
Primitive Process Management Mode

HARDWARE

{a) Layered kernel (b) Microkernel

Figure 4.10 Kernel Architecture

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8

—_— T e o

e N-E—N -

28

UPPSALA
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Benefits of a Microkernel
Organization

m Uniform interface on request made by a
process

» Don’t distinguish between kernel-level and user-level
services

» All services are provided by means of message
passing
m Extensibility
» Allows the addition of new services
m Flexibility
» New features added

» EXxisting features can be subtracted
Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 29

Benefits of a Microkernel
Organization

UPPSALA
UNIVERSITET

m Portability

» Changes needed to port the system to a new
processor are changed in the microkernel -
not in the other services

m Reliability
» Modular design
» Small microkernel can be rigorously tested

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 30

Benefits of Microkernel
Organization

UPPSALA
UNIVERSITET

m Distributed system support

#» Message are sent without knowing what the
target machine is

m Object-oriented operating system

» Components are objects with clearly defined
Interfaces that can be interconnected to form
software

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 31

LY
UPPSALA
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Microkernel Design

m Low-level mem

ory management

» Mapping each virtual page to a physical page frame

Application

page
Fault

resume

Pager

Address-space
function call

Microkernel

Figure 4.11

Monday, September 24, 2007

Page Fault Processing

Computer Systems/Operating Systems - Class 8

32

o)
UPPSALA
UNIVERSITET

Microkernel Design

m Interprocess communication
» Basic mechanism Is a message

» A port Is a queue of messages destined for a
particular process

m [/O and interrupt management
» Hardware interrupts handled as messages
» |/O ports included in address space

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 33

g
UPPSALA
UNIVERSITET

Windows Processes

m Implemented as objects

m An executable process may contain one
or more threads

m Both processes and thread objects have
built-in synchronization capabillities

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 34

UPPSALA
UNIVERSITET

Object Type

Object Body
Attributes

Services

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Windows Process Object

-

Process

Frocess 11D

Security Descriptor

Base priority

Default processor affinity
Quota limits

Execution tme

LAy courters

Wil cpemtion counters

Exceptiondebugging ports
Exit status

Monday, September 24, 2007

Create process
CpeEn process

Chery process information
et process information

Currernt process
Terminate process

(a) Process object

Computer Systems/Operating Systems - Class 8

35

UPPSALA
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Windows

Object Type

Thread Object

Monday, September 24, 2007

Object Body
Attributes

mervices

Thread

Thread 1D

Thread cortext
Dynamic priority
Base priority

Thread processor affinity
Thread execution time
Alert status
Suspension count
Impersonation token
Termination port
Thread exit status

Create thread

Open thread

Query thread information
Set thread information
Current thread
Terminate thread

Get context

Set context

Suspend

Resume

Alert thread

Test thread alert
Register termination port

(b} Thread object

Computer Systems/Operating Systems - Class 8

36

UPPSALA
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Runnable
Pick to Standby :
Run Switch
Preempted .

Ready = Running

/ \ /
Resource Unblock/Resume Block! Terminate
Available esource Available oc

Suspend Y
Transition - Waiting Terminated
Unblock
Resource Not Available

Not Runnable

Monday, September 24, 2007

Figure 4.14 Windows Thread States

Computer Systems/Operating Systems - Class 8

UPPSALA
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Linux Task Data Structure

m State

Scheduling information
dentifiers

nterprocess communication
_Inks

Times and timers

m File system

m Address space

m Processor-specific context

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8

38

UPPSALA
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Stopped

signal signal

pu——

Running \\
/ Y State .
. termination
creation —_—
o Ready scheduling Execuling -
/
; yenl /
signal
or

event

Zombie

Uninterruptible

NS

Interruptible

Figure 4.18 Linux Process/Thread Model

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8

39

o)
UPPSALA
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

concurrency

m Multiple applications
» Multiprogramming

m Structured application

» Application can be a set of concurrent
processes

m Operating-system structure

» Operating system Is a set of processes or
threads

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8

40

UPPSALA
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

concurrency

Table 5.1 Some Key Terms Related to Concurrency

crifical section

deadloclk

livelock

muinal exclusion

race condition

starvation

A section of code within a process that reguires access to shared resources
and which may not be executed while another process is in a corresponding
section of code.

A situation in which two or more processes are unable to proceed because
each is waiting for one of the others to do something.

A situation in which two or more processes continuously change their state in
response to changes in the other process(es) without doing anv nseful work.

The requirement that when one process is in a critical section that accesses
shared resources, no other process may be in a critical section that accesses
any of those shared resources.

A situation in which multiple threads or processes read and write a shared
data item and the final result depends on the relative timing of their
execution.

A situation in which a runnable process is overloolked indefinitely by the
scheduler; although it is able to proceed, it is never chosen.

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8

41

UPP SALA
UNIVERSITET

Difficulties of Concurrency

m Sharing of global resources

m Operating system managing the aIIocatlon
of resources optimally :

m Difficult to locate programming errors

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 42

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

|l A Simple Example

void echo()

1
chin = getchar();

chout = chin;
putchar(chout);

}

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8

43 =

UPPSALA
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

A Simple Example

Process Pl Process P2

chin = getchar(); ;

i chin = getchar();
chout = chin; chout = chin;
putchar(chout); i

i putchar(chout);

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8

44

o)
UPPSALA
UNIVERSITET

Race Condition

m A race condition occurs when multiple
processes or threads read and write data
items so that the final result depends on
the order of execution of instructions In
the multiple processes or threads.

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 45

UPPSALA
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Operating System Concerns

m Keep track of various processes

m Allocate and deallocate resources
Processor time
* Memory
» Files
|/O devices

m Protect data and resources

m Output of process must be independent of the
speed of execution of other concurrent
processes

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8

46

UPPSALA
UNIVERSITET

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Table 5.2

Process Interaction

Degree of Awareness | Relationship Influence that one Potential Control
Process has on the Problems
Other

Processes unaware of | Competition *Besults of one «MNutual exclusion

each other

process independent
of the action of
others

*Timing of process

may be affected

sDeadlock (renewable
resource)

* Starvation

Processes indirectly
aware of each other
(e.g.. shared object)

Cooperation by
sharing

*Results of one
process may depend
on information
obtained from others

+*Timing of process
may be affected

+Mutnal exclusion

*Deadlock (renewable
resource)

s Starvation

sData coherence

Processes directly
aware of each other
(have communication
primitives available to
them)

Cooperation by
communication

*Results of one
process may depend
on information
obtained from others

+*Timing of process
may be affected

*Deadlock
(consumable
resource)

s Starvation

Monday, September 24, 2007

Computer Systems/Operating Systems - Class 8

47

Competition Among
Processes for Resources

UPPSALA
UNIVERSITET

m Mutual Exclusion

#» Critical sections

= Only one program at a time is allowed in its critical
section 5

= Example only one process at a time is allowed to
send command to the printer

m Deadlock
m Starvation

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 48

Requirements for Mutual
Exclusion

UPPSALA
UNIVERSITET

m Only one process at a time is allowed In
the critical section for a resource

m A process that halts in its noncritical
section must do so without interfering with
other processes :

m No deadlock or starvation

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 49

Requirements for Mutual
Exclusion

UPPSALA
UNIVERSITET

m A process must not be delayed access to
a critical section when there is no other
process using it

m No assumptions are made about relative
process speeds or number of processes

m A process remains inside its critical
section for a finite time only

(@)
O
@)
-
'4
D
o
(7))
c
@)
=
©
&
-
@)
Y
c

Monday, September 24, 2007 Computer Systems/Operating Systems - Class 8 50

	Today’s class
	Process
	Process
	Multithreading
	Process
	Thread
	Benefits of Threads
	Uses of Threads in a Single-User Multiprocessing System
	Threads
	Thread States
	Remote Procedure Call Using Single Thread
	Remote Procedure Call Using Threads
	Multithreading
	User-Level Threads
	User-Level Threads
	Kernel-Level Threads
	Kernel-Level Threads
	Combined Approaches
	Combined Approaches
	Categories of Computer Systems
	Categories of Computer Systems
	Symmetric Multiprocessing
	Multiprocessor Operating System Design Considerations
	Microkernels
	Benefits of a Microkernel Organization
	Benefits of a Microkernel Organization
	Benefits of Microkernel Organization
	Microkernel Design
	Microkernel Design
	Windows Processes
	Windows Process Object
	Windows Thread Object
	Linux Task Data Structure
	Concurrency
	Concurrency
	Difficulties of Concurrency
	A Simple Example
	A Simple Example
	Race Condition
	Operating System Concerns
	Competition Among Processes for Resources
	Requirements for Mutual Exclusion
	Requirements for Mutual Exclusion

