10. Loop shaping

Torsten Söderström
Department of Systems and Control
Information Technology
Uppsala University

LOOP SHAPING

Open loop system

\[y = Gu \]

Feedback

\[u = -F_y y \]

Make the loop gain \(GF_y \), the sensitivity function \(S \), the complementary sensitivity function \(T \), and the disturbance to input transfer function \(G_{wu} \) appropriate.

\[
S = (I + GF_y)^{-1}
\]

\[
T = I - S = (I + GF_y)^{-1}GF_y
\]

\[
G_{wu} = -(I + F_y G)^{-1}F_y
\]

\[
- F_y (I + GF_y)^{-1} - F_y S
\]

LOOP SHAPING, cont’d

The transfer functions \(S, T, G_{wu} \) can not all be small for all frequencies.

Introduce weighting \(W_S, W_T, W_u \) and require that

\[
W_S(i\omega)S(i\omega), \ W_T(i\omega)T(i\omega), \ W_u(i\omega)G_{wu}(i\omega)
\]

are small for all frequencies.

Assume \(G \) and \(W_S \) to be strictly proper (without direct term).

Extended system description

Inputs \(u, w \)

Outputs \(z_1 = W_u u, \ z_2 = W_T Gu, \ z_3 = W_S (Gu + w), \ y = Gu + w \)

\[W_u \rightarrow z_1 \]

\[u \]

\[G \]

\[W_T \rightarrow z_2 \]

\[W_S \rightarrow z_3 \]

\[W_S \]

\[G \]

\[W_T \]

\[z_2 \]

\[z_3 \]

\[y \]
LOOP SHAPING, cont’d

With feedback $\nu = -F_y y$, the closed loop system becomes

$$
\begin{pmatrix}
 z_1 \\
 z_2 \\
 z_3
\end{pmatrix} = \begin{pmatrix}
 W_u G_{wu} \\
 -W_T T \\
 W_S S
\end{pmatrix} \begin{pmatrix}
 \Delta \\
 w \equiv G_{ec} w
\end{pmatrix}
$$

LOOP SHAPING, cont’d

State space model for the open-loop system $(u, w) \mapsto (z, y)$.
Assume innovations form (crucial!) is given

$$
\begin{align*}
\dot{x} &= A\dot{x} + Bu + Nw \\
z &= M\dot{x} + Du \\
y &= C\dot{x} + w
\end{align*}
$$

Comments:

1. Innovations form implies $A - NC$ is stable.
 [Possibly make a transformation of u to achieve this; it is always possible if $D^T D$ is invertible, that is, if $\lim_{s \to \infty} W_u(s)$ is invertible.]

DESIGN APPROACHES

- Optimal H_2 control
- (Optimal) H_∞ control
- Robust control
- LQG control

OPTIMAL H_2 CONTROL

Minimize the design criterion

$$
\begin{align*}
V(F_y) &= \frac{1}{2\pi} \int \left[|W_S (i\omega) S(i\omega)|^2 + |W_T (i\omega) T(i\omega)|^2 + |W_u(i\omega) G_{wu}(i\omega)|^2 \right] d\omega \\
&= \frac{1}{2\pi} \int \left[|G_{ec}(i\omega)|^2 \right] d\omega = \| G_{ec} \|^2
\end{align*}
$$
OPTIMAL H_2 CONTROL, cont’d

It holds that $z = G_{ee}w$. Let w have intensity I. Then

$$\| z \|^2 = \frac{1}{2\pi} \text{tr} \left(\int \Phi_2(\omega) d\omega \right) = \frac{1}{2\pi} \int \text{tr}(\Phi(\omega)) d\omega = \frac{1}{2\pi} \int |G_{ee}(i\omega)|^2 d\omega = V(F_y)$$

Hence

$$V(F_y) = \| z \|^2 = \| Mx + Du \|^2 = \| Mx \|^2 + \| u \|^2$$

The optimal solution is given by the LQG theory!

OPTIMAL H_2 CONTROL, cont’d

Solution in state space form (recall open loop system given in innovations form)

$$\dot{x} = Ax + Bu + N(y - C\hat{x})$$
$$u = -L\hat{x}$$

with

$$L = B^T S$$
$$0 = A^T S + SA + M^T M - SBB^T S$$

Hence

$$F_y(s) = L(sI - A + BB^T S + NC)^{-1} N$$

EXAMPLE, LOOP SHAPING

A DC servo

$$G(s) = \frac{1}{s(s + 1)}$$

$$\dot{x} = \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u$$

Weights

$$W_S(s) = 1/s, \quad W_u = 1, \quad W_T = \frac{5(s + 1)}{s + 10}$$

PERFORMANCE BOUNDS

$$\| W_S S \|_\infty \leq \gamma \Rightarrow |S(i\omega)| \leq \gamma |W_S(i\omega)|^{-1} = \gamma \omega$$

$$\| W_u G_{wu} \|_\infty \leq \gamma \Rightarrow |G_{wu}(i\omega)| \leq \gamma |W_u(i\omega)|^{-1} = \gamma$$

$$\| W_T T \|_\infty \leq \gamma \Rightarrow |T(i\omega)| \leq \gamma |W_T(i\omega)|^{-1} = \frac{\sqrt{\omega^2 + 100}}{5(\omega^2 + 1)}$$
EXAMPLE, cont’d

Upper bounds

![Graphs showing upper bounds](image)

Extended model

Basic model

\[x = \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u \]

\[y_o = \begin{pmatrix} 1 & 0 \end{pmatrix} x \]

Introduce further states

\[
\begin{align*}
z_1 & = u \\
z_2 & = W_T y_o \\
& = \frac{5(s + 1)}{s + 10} y_o = \left(5 + \frac{-45}{s + 10} \right) y_o \\
z_3 & = W_S (y_o + w) \\
& = \frac{1}{s} (y_o + w)
\end{align*}
\]

Choose \(x_3 \) and \(x_4 \) as

\[x_3 = z_3 \Rightarrow \dot{x}_3 = y_o + w \]

\[x_4 = \frac{1}{s + 10} y_o \Rightarrow \dot{x}_4 = -10 x_4 + y_o \]

EXAMPLE, cont’d

Augmented model

\[x = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & -10 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} u \]

\[+ \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} w \]

\[y = \begin{pmatrix} 1 & 0 & 0 & 0 \end{pmatrix} x + w \]

\[z = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 5 & 0 & 0 & -45 \\ 0 & 0 & 1 & 0 \end{pmatrix} x + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} u \]

EXAMPLE, cont’d

Input and output for a reference step

![Step response graphs](image)
EXAMPLE, cont’d

Sensitivity functions and weights
\((\gamma = 1 \text{ in plots}) \)

\[
\begin{align*}
\| G_{ec} \|_\infty &= \max_\omega \sigma(G_{ec}(i\omega)) \\
\| G_{ec} \|_\infty &\leq \gamma \\
|W_S(i\omega)S(i\omega)| &\leq \gamma, \quad \forall \omega \\
|W_T(i\omega)T(i\omega)| &\leq \gamma, \quad \forall \omega \\
|W_u(i\omega)G_{wu}(i\omega)| &\leq \gamma, \quad \forall \omega
\end{align*}
\]

OPTIMAL \(\mathcal{H}_\infty \) CONTROL

Design objective: Minimize
\[
\| G_{ec} \|_\infty = \max_\omega \sigma(G_{ec}(i\omega))
\]

Find regulators that satisfy
\[\| G_{ec} \|_\infty \leq \gamma \]

Consequences
\[
\begin{align*}
|W_S(i\omega)S(i\omega)| &\leq \gamma, \quad \forall \omega \\
|W_T(i\omega)T(i\omega)| &\leq \gamma, \quad \forall \omega \\
|W_u(i\omega)G_{wu}(i\omega)| &\leq \gamma, \quad \forall \omega
\end{align*}
\]

OPTIMAL \(\mathcal{H}_\infty \) CONTROL, cont’d

Solution.
Assume
\[
A^T S + SA + M^T M + S(\gamma^{-2} N N^T - BB^T) S = 0
\]
has a positive semidefinite solution \(S = S_\gamma \), and that \(A - BB^T S_\gamma \) is stable.

Consider the regulator
\[
\begin{align*}
\dot{x} &= A\dot{x} + Bu + N(y - C\dot{x}) \\
u &= -L_{\infty} x
\end{align*}
\]
with \(L_{\infty} = B^T S_\gamma \). Then
\[
F_y(s) = L_{\infty} (sI - A + BB^T S_\gamma + NC)^{-1} N
\]

OPTIMAL \(\mathcal{H}_\infty \) CONTROL, cont’d

Results.

1. The bounds on
\[
|W_S(i\omega)S(i\omega)|, \quad |W_T(i\omega)T(i\omega)|, \quad |W_u(i\omega)G_{wu}(i\omega)|
\]
are satisfied.

2. If the Riccati equation has no positive semidefinite solution with \(A - BB^T S_\gamma \) stable, then there is no linear regulator satisfying the bound
\[
\| G_{ec} \|_\infty < \gamma
\]
OPTIMAL H_∞ CONTROL, cont’d

Design steps

1. G is given.
3. Choose a constant γ.
4. Solve the Riccati equation, compute L_{∞}.
 (a) If no solution exists, increase γ and go to Step 3.
 (b) If a solution exists, accept it, or decrease γ and go to Step 3.
5. Check the properties of the closed loop system. If not acceptable, go to Step 2.

As a first attempt the weights W_u, W_S, W_T are chosen of low order (say 1 or 2), and diagonal in the multivariable case.

Example - DC servo

Weights as before

$$W_S = 1/s, \quad W_u = 1, \quad W_T = \frac{5(s + 1)}{s + 10}$$

Try different (decreasing) values of γ (until the Riccati equation has no positive definite solution.)

Example, cont’d

Response to step in the reference signal

Sensitivity functions and weights
ROBUST LOOP SHAPING

Try to obtain good stability margins without degrading performance.
(Useful design approach for MIMO systems)

System \((D = 0) \)
\[
\dot{x} = Ax + Bu \\
y = Cx
\]

Feedback
\[
u = -F_y \dot{y}
\]

Controller
\[
\dot{x} = Ax + Bu + K(y - C\dot{x}) \\
u = -L\dot{x}
\]

ROBUST LOOP SHAPING, cont’d

Design procedure (Glover-McFarlane)
1. Solve the Riccati equations
\[
AZ + ZA^T - ZC^T C Z + BB^T = 0 \\
A^T X + XA - XBB^T X + C^T C = 0
\]
2. Set
\[
\lambda_m = \max \ \text{eig}[XZ]
\]
3. Set (with \(\alpha \) a scaling factor, strictly larger than 1)
\[
\gamma = \alpha \sqrt{1 + \lambda_m} \\
R = I - \frac{1}{\gamma^2} (I + XZ) \\
L = B^T X \\
K = R^{-1} ZC^T
\]

ROBUST LOOP SHAPING, cont’d

Example – DC servo
\[
G(s) = \frac{1}{s(s + 1)}, \quad \alpha = 1.1
\]

Step response

- \[\gamma = \frac{1}{s(s + 1)}\]
EXAMPLE, ROBUST LOOP SHAPING, cont’d

Sensitivity functions

ROBUST LOOP SHAPING, cont’d

Design in the multivariable case

1. Use RGA to make $G(s)$ ‘as diagonal as possible’.
2. Choose $W_p(s)$ diagonal, so that $G(s)W_p(s)$
is approximately equal to the desired loop gain.
3. Possibly adjust constant matrices W_1 and
W_2 to achieve performance (crossover
frequency, decoupling, etc) of
$W_2G(s)W_p(s)W_1$.
4. Compute the robust controller $F_p(s)$. (Go
to Step 2 in case γ is ‘large’, say if $\gamma \geq 4$).
5. Apply the feedback

$$u = -W_p(s)W_1F_p(s)W_2y$$

COMPARING DIFFERENT DESIGN TECHNIQUES

Compare the following techniques, applied to
the DC servo

- LQG
- LTR
- H_2
- H_∞
- Robust control

COMPARING DIFFERENT DESIGN TECHNIQUES, cont’d

Step response