
A very simple client server in Erlang

February 5, 2008

1 Introduction

By now you should of read and the first 32 pages of the tutorial pdf file from the
web page. You shall now develop a very simple client server system in Erlang.

2 A simple server

Remember that Erlang is a functional language, which means that there are no
variables but only values. A server generally has some state. Thus we have to
use patterns similar to the following:

server(State) ->

receive

some_request ->

..... do some stuff

..... compute the new state NewState

server(NewState)

end.

You will extend the following very simple server. Your server should have
one piece of state, a value that records how many times it has been called.

server(State) ->

receive

{request,Return_PID} ->

io:format("Request received. ~w~n",[Return_PID]) ,

NewState = State + 1,

Return_PID ! {hit_count,NewState},

server(NewState)

end.

The client is simpler, it takes as a parameter the server PID, sends the
request and prints out the value.

client(Server_Address) ->

Server_Address ! {request, self()},

1

receive

{hit_count,Number} ->

io:format("Hit count was ~w~n",[Number])

end.

Now put everything in one file and try it!!! (Actually type in the file yourself,
you’ll learn a lot just by typing the examples in).

-module(simple).

-export([server/1,client/1,start/0]).

server(State) ->

receive

{request,Return_PID} ->

io:format("Request received. ~w~n",[Return_PID]) ,

NewState = State + 1,

Return_PID ! {hit_count,NewState},

server(NewState)

end.

client(Server_Address) ->

Server_Address ! {request, self()},

receive

{hit_count,Number} ->

io:format("Hit count was ~w~n",[Number])

end.

start() ->

Server_PID = spawn(simple,server,[0]),

spawn(simple,client,[Server_PID]).

3 Many clients

The previous example is a bit boring with only one client. The following function
will spawn multiple clients:

spawn_n(N,Server_PID) ->

if

N>0 ->

spawn(simple,client,[Server_PID]),

2

spawn_n(N-1,Server_PID)

end.

4 Hand in questions and files

1. In the simple server

server(State) ->

receive

{request,Return_PID} ->

io:format("Request received. ~w~n",[Return_PID]) ,

NewState = State + 1,

Return_PID ! {hit_count,NewState},

server(NewState)

end.

What does the line

Return_PID ! {hit_count,NewState},

do?

2. In the simple client

client(Server_Address) ->

Server_Address ! {request, self()},

receive

{hit_count,Number} ->

io:format("Hit count was ~w~n",[Number])

end.

What does self() do and why is it used in this example?

3. In the simple start() function what does

spawn(simple,client,[Server_PID]).

do?

4. Modify start to take a single parameter which is the number of clients
that have to be spawned. Don’t forget to modify the export directives
correctly. Include the complete listing for this program.

5. Now the owner of the server has the right to query the count without
incrementing it. Modify the server by adding code for the message

3

{server_owner,Server_PID}

In the following place

server(State) ->

receive

{request,Return_PID} ->

io:format("Request received. ~w~n",[Return_PID]) ,

NewState = State + 1,

Return_PID ! {hit_count,NewState},

server(NewState) ;

{server_owner,Server_PID} ->

.......

end.

Modify start to have a single owner process that constantly queries the
server for the state. You should fill in thes and decide on what other
messages are passed between the server and the owner. You should print
out the value received from the server using io:format.

owner(Server_PID) ->

Server_PID! ,

receive

{ } ->

..... ,

io:format(......) ,

owner(Server_PID)

end.

Provide a complete listing for this file.

6. You are to give the owner the power to reset the server counter to 0. You
should modify the server as follows:

server(State) ->

receive

{request,Return_PID} ->

io:format("Request received. ~w~n",[Return_PID]) ,

NewState = State + 1,

Return_PID ! {hit_count,NewState},

server(NewState) ;

reset ->

io:format(....) ,

server(....)

end.

4

again print out some message to say that you’ve been reset on the screen,
but also you’ll need to work out what value pass when you do the recursive
call to server.

7. Now modify the owner process to reset the server counter if it exceeds
100. Look at how the erlang if statement works. Hand in the complete
listing for this example.

5

