
Distributed Systems Lecture 7 1

Slide 1

Today’s Topics - Transactions Chapter 12.

Today we will look at Transactions on single servers.

• What are Transactions?

• Concurrency Control

• Recoverability

• Nested Transactions

• Locks 12.4

• Introduction to Optimistic Concurrency Control

• Introduction to Timestamps.

Reading all of Chapter 12.

Slide 2

What are Transactions?

Suppose that you are booking a flight from Sundsvall to Florida.

You go to the travel agents they tell you that you must.

• Fly Sundsvall to Stockholm

• Stockholm to Chicago

• Chicago to Florida.

You say OK, book the flights they start book the flights one by one
and discover on the last flight that it is full. The next free flight from
Chicago to Florida is the next day. So you have to wait all a whole
day at Chicago.

Distributed Systems Lecture 7 2

Slide 3

What are Transactions?

• The situation on the previous is not optimal.

• You want to either book all the flights or book none of them.
You don’t want a half completed booking.

• Especially if the half completed booking commits you to
something that you don’t want (spending a night at Chicago).

• A transaction is a sequence of operations with an all or nothing
behavior.

• The problems comes is that other people might be booking
flights at the same time and hence some flights might get full
while you think they are empty.

Slide 4

What are Transactions?

Transactions are atomic in the sense that:

1. they are free from interference by operations being performed on
behalf of other concurrent client;

2. either all of the operations must be completed successfully or
they must have no effect at all (even in the presence of server
crashes)

Distributed Systems Lecture 7 3

Slide 5

ACID

Transactions should satisfy the mnemonic ’ACID’:

• Atomicity: a transaction must be all or nothing;

• Consistnecy: a transaction takes the same from one consistent
state to another consistent state;

• Isolation; transactions should be run as if they are they only
transaction running (they should not be interfered with by
another transaction);

• Durability: when the transaction commits it should be
recoverable in case of server failure (if the server crashes after I
have booked my flight, the flight is still booked).

Slide 6

Problems with Transactions - Concurrency Control

• The problem with transaction is that we want to do them
efficiently.

• An inefficient way of doing things would be to stop access to the
server by anybody else while when a transaction has started and
only grant access when this person has finished.

• Instead we allow many transactions to go on at the same time
and try to stop bad things happening when we do things at the
same time.

Distributed Systems Lecture 7 4

Slide 7

Problems with Transactions - Concurrency Control

Two things can go wrong when we merge transactions.

• The Lost Update Problem

• Inconsistent retrievals

To illustrate what is going on we look at a bank account example.

Slide 8

The Lost update problem

Consider two transaction T and U where A = $100, B = $200 and

C = $300.

Transaction T: Transaction U:
balance = b.getbalance();

b.setBalance(balance*1.1);

a.withdraw(balance/10);

balance = b.getBalance();

b.setBalance(balance*1.1);

c.withdraw(balance/10);

Executing T and U should result in b being increased by 10% and
10% again so b should have the value $242 dollars afterwards.

Distributed Systems Lecture 7 5

Slide 9

The lost update problem

Now consider the following interleaving of the operations :

bal = b.getBalance(); $200

bal = b.getBalance(); $220

b.setBalance(bal*1.1);; $200

b.setBalance(bal*1.1); $220

a.withdraw(bal/10); $80

c.withdraw(bal/10); $280

We see that we lost one of the updates to b.

Slide 10

Inconsistent retrievals

Two transaction V and W .
Transaction V: Transaction W:
a.withdraw(100);

b.deposit(100);
calculate Branch total.

Distributed Systems Lecture 7 6

Slide 11

The inconsistent retrievals Problem

Consider the following interleaving:

a.withdraw(100); $100

total = a.getBalance(); $100

total += b.getBalance(); $300

b.deposit(100) $300
The problem is that the sum will be the wrong value.

Slide 12

Serial Equivalence

• If we have a set of transactions and we don’t have any particular
order on them then we could say a correct result is some
sequence of them.

• For example consider the set of transaction S, T, U then we could
take any order: S; T ; U ,S; U ; T ,T ; S; U ,T ; U ;S,U ;S;T ,U ; T ; S.

• We say an interleaving of the operations of a transaction is
Serially equivalence if the result if equivalent to some
sequence of transactions.

• The goal of concurrency control is to ensure serial equivalence
while trying to be as efficient as possible.

Distributed Systems Lecture 7 7

Slide 13

Serial Equivalence

A serially equivalent interleaving of V and W .

Transaction V: Transaction W:
a.withdraw(100);

b.deposit(100);
calculate Branch total.

a.withdraw(100); $100

b.deposit(100) $300

total = a.getBalance(); $100

total += b.getBalance(); $300

Slide 14

Serial Equivalence

A serially equivalent interleaving of T and U .

bal = b.getBal() $200

b.setBal(bal*1.1) $220

bal = b.getBal(); $220

b.setBal(bal*1.1); $242

a.withdraw(bal/10); $80

c.withdraw(bal/10); $278

Distributed Systems Lecture 7 8

Slide 15

Conflicting Operations

• When a pair of operations conflicts we mean that their combined
effects depends on the order in which they are executed.

• Consider only Read and Write operations.

Operations Conflict

read read No

read write Yes

write write Yes

Slide 16

Serial Equivalence

For two transaction to be Serially Equivalent, it is necessary and
sufficient that all pairs of conflicting operations of the two
transactions be executed in the same order at all the data they both
access.

Consider two transactions T and U defined as follows:

• T : x=read(i);y=read(j);write(k,x+y);

• U : write(j,10);write(i,20);

The conflicting pairs of operations are as follows:

• x=read(i) and write(i,20);

• y=read(j); write(j,10);

Distributed Systems Lecture 7 9

Slide 17

Conflicting pairs

The following interleaving is not serially equivalent.

write(j,10);

¦¦
¦¦

¦¦
¦¦

¦¦
¦¦

¦¦
¦¦

¦¦
¦¦

¦¦
¦¦

¦¦

x=read(i);

RRRRRRRRRRRRR

write(i,10);

y=read(j,10);

Slide 18

Serial Equivalence - Conflicting Operations

The following is serially equivalent:

x=read(i);

99
99

99
99

99
99

99
99

99
99

99
99

99
9

y=read(j,10);

write(j,10);

RRRRRRRRRRRRR

write(i,10);

Distributed Systems Lecture 7 10

Slide 19

Conflicting Operations - Serial Equivalence

• It might seem that we haven’t got so far.

• But, before we had a global definition of serial equivalence.

• Now we have a local condition to satisfy in terms of conflicting
pairs.

• There are three commonly used alternatives for concurrency
control:

– Locking (Widely used but can lead to deadlocks);

– Optimistic concurrency control (assume that nothing bad will
happen later repair any mess that has been created)

– Timestamp ordering.

Slide 20

Locking

• Basic idea: A transaction must be scheduled so that their effect
on shared data is serially equivalent.

• A server can achieve serial equivalence of transactions by
serializing access to the objects.

• Simple example, the use of exclusive locks. Only one object can
read or write at a time. (Can be more refined allow separate
locks for reading and writing).

• If you can’t lock the data you have to wait.

Distributed Systems Lecture 7 11

Slide 21

Exclusive Locks

Operation Locks Operations Locks

bal = b.getBal(); Lock B

b.setBal(bal*1.1)

a.withdraw(bal/10) lock A bal = b.getBal() wait

closeTransaction unlock A,B

lock B

b.setBalance(bal*1.1)

c.withdraw(bal/10) lock C

closeTransaction unlock B,C

Slide 22

Strict Two Phase Locking

• Two Phase Locking Transaction is not allowed any new locks
after it has released a lock. Two phases growing and shrinking
phase. Growing phase all locks are acquired, shrinking phase
locks are given back.

• Strict Two Phase Locking Any locks acquired are not given back
until the transaction completed or aborts (ensures durability).
Locks must be held until all the objects it updated have been
written to permanent storage.

Distributed Systems Lecture 7 12

Slide 23

Deadlocks

• When an item is locked another process might be waiting for it.
The process might then be waiting for a lock held by the waiting
process.

Insert figure 12.20 , 12.21

Slide 24

Deadlock Prevention

• Simple solution, lock everything the beginning of each
transaction. Not terrible efficient.

• Lock things in a predefined order. (Also not so efficient, might
result in premature locking).

Distributed Systems Lecture 7 13

Slide 25

Deadlock Detection

• Look for cycles in the wait graph.

• The lock manager keeps track of who is waiting for what lock
and checks for cycles.

• When a deadlock is detected you have to abort a transaction.

Slide 26

Optimistic Concurrency Control

• Locking is not so efficient.

• Optimistic concurrency control.

– Proceed with all transaction assuming that things are working
well.

– Abort transaction which didn’t complete correctly

– Works on the assumption that on the whole transaction don’t
interfere that much.

Distributed Systems Lecture 7 14

Slide 27

Timestamp Ordering

• In concurrency control schemes based on timestamp ordering,
each operation in a transaction is validated when it is carried out.

• If the operation cannot be validated the transaction is aborted
immediately and then can be restarted by the client.

• Each transaction is assigned a unique timestamp value when it
starts;

• The timestamp defines its position in the time sequence of
transactions.

• Request from transaction can be ordered according to their
timestamps.

Slide 28

Timestamp Ordering

The basic timestamp rule is as follows:

• A transaction’s request to write an object is valid only if that
object was last read and written by earlier transactions. A
transaction’s request to read an object is valid only if that object
was last written by an earlier transactions.

