Computer exercise 2 for the course:
Empirical Modelling

Using the graphical interface Ident and comparing some methods

Preparation exercises:
1. Read Ch 12 and 14 in the textbook

<table>
<thead>
<tr>
<th>Name</th>
<th>(Assistant’s comments)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program</td>
<td>Year of reg.</td>
</tr>
<tr>
<td>Date</td>
<td></td>
</tr>
</tbody>
</table>
Contents

1. Goals
2. Preparations
3. Ident- The graphical user interface (main task)
4. Some other demos - Optional
5. Further aspects on model validation - Optional
1 Goals

The aim of this computer laboratory is to get you familiar with the System Identification toolbox. Of particular interest is the use of the graphical interface (ident) developed for the identification toolbox commands.

A further study of the toolbox and a validations of ARX models and ARMAX models are also given as an optional task.

2 Preparations

The necessary background for this computer laboratory can be found in Chapters 12 and 14 of Modellbygge and simulering.

3 Ident - The graphical user interface (main task)

In this first task the aim is to learn how to use the System Identification Toolbox (SIT). In particular the graphical user interface ident will be used.

1. Start the demo by typing iddemo. Select demo 1 and follow the guided tour on how to use the graphical user interface. In task 36 in the demo change
 "Use the popup menu in the Parametric Models dialog to select State Space"
 to
 "Use the popup menu in the Parametric Models dialog to select ARX. Then
 click on order Selection followed by Estimate. All model orders from 1 to 10 is
 then estimated and evaluated"
 After the demos is finished, you may inspect more carefully different alternatives
 in the interface.

2. Generate some data by yourselves and use the interface to identify a parametric
 model. You may proceed as follows:\footnote{An alternative would be to use ’filter’ to generate the data as in Computer lab 1. We chose here to use commands in the SIT since we then very easy could load the true system into ident}

 \begin{verbatim}
 %Define system (the example below corresponds to nk=1, nb=2, na=2)
 B = [0 1 0.5];
 A = [1 -1.5 0.7];
 Mtrue=idpoly(A,B,1) %An ARX system is defined. DO help idpoly
 %Generate data
 N=500; %Number of data
 u = idinput(N); %Generate a binary input signal. DO help idinput
 lambda=0.5;
 e = idinput(N,’rgs’)*lambda; %Generate white Gaussian noise
 y=sim(Mtrue,[u e]) %Simulate the system. DO help idmodel/sim
 %
 % Open ident and load the data (y and u). Also import the true system
 % Mtrue (Go to Models/Import in Ident). Then, start estimating
 % (ARX) models and compare the estimates, for example
 % in the frequency domain, with the true system Mtrue
 \end{verbatim}
% Of course, in practice \(M_{\text{true}} \) is unknown (otherwise we would not need to estimate it). But for the purpose of illustrating the concept it may be good to know \(M_{\text{true}} \)!

4 Some other demos - Optional

You may not have time during the lab exercise to go through the two examples below, but it may be instructive to do this exercises at you own at a later stage!

1. Select the demonstrations Compare different identification methods and notice how different identification methods can be used. Neglect the part with the “pem” and “iv” methods (not included in the course). After the pem, ARX modelling is covered which should be studied. Also learn how the models could be evaluated in various ways (poles and zeros, bode diagram, comparison with spectral analyses, and Nyquist plots)

2. Select demo Build simple models from real laboratory process data where data from a hair dryer is used. Check how different methods can be used and compared, including simple methods like correlation analyses (neglect the part with pem, which is not covered in the course)

5 Further aspects on model validation - Optional

This exercise gives initial training on how to validate a model. Note that the used tests also can be found on the Ident GUI.

1. In this task (it can be solved by running the m-file comp12a, see below) we will use the least squares method, LSM, for identifying a system given by

\[
(1 - 1.5q^{-1} + 0.7q^{-2})y(t) = (1.0q^{-1} + 0.5q^{-2})u(t) + (1 - 1.0q^{-1} + 0.2q^{-2})e(t)
\]

The input signal is binary white noise \(u(t) = \pm 1 \), independent of the white noise \(e(t) \), which has zero mean and variance \(\lambda^2 = 1 \).

The system is simulated using 250 data points. An ARX model of order \(n \) is estimated using the least squares method. Different values of \(n \) \((n = 1, \ldots, 6) \) are tried. Some various methods The following methods for model validation is presented in order to decide what model (order) to accept:

(a) Plot of the residuals \(\varepsilon(t) \). Do they look as an uncorrelated sequence?
(b) Plot of the estimated auto- and cross-correlation function \(\hat{r}_\varepsilon \) and \(\hat{r}_{\varepsilon u} \).
(c) Plot the loss function \(V_N(\hat{\theta}) \), the AIC and FPE. All as a function of the model order.
(d) Plot of poles and zeros of the models. If a pole–zero cancellation (almost) occurs, it is a sign that the model order has been chosen unnecessarily high.

The task can be carried out by running the following Matlab code. It is available as the file comp12a.
Discuss what model order the different criteria gave.

Answer:

Remark: It could be of interest to also study the Bode diagram of the different estimate.

```matlab
% file compl2a.m ******************
%Computer Laboratory 2
%System Identification
%TS 920315, 950405
%rev EKL 040525
clear
clf
format compact

% preparation exercise
np=250;
a0=[1 -1.5 0.7]; b0=[0 1 .5]; c0=[1 -1.0 0.2];
s2=1; l2=1;
u=sign(randn(2*np,1))*sqrt(s2); e=randn(2*np,1);

th=idpoly(a0,b0,c0,1,1,l2);
y=idsim([u e],th);
uv=u(np+1:end);ev=e(np+1:end);yv=y(np+1:end);
u=u(1:np);e=e(1:np);y=y(1:np);
ze=iddata(y,u);zv=iddata(yv,uv);

%Use of LSM

nlag=10;resl=[]; plsm=[]; zlsm=[];
np=length(y);
nmax=6;
for n=1:nmax,
    that1=arx(ze,[n n 1]);

% Change the above command to use a prediction error method %
%
% that1=armax(ze,[n n n 1]); %
```
5 Further aspects on model validation - Optional

% Further aspects on model validation

eval(['TH' num2str(n) '=that1;']); % to save that1 for n=1:nmax
present(that1);
[comp1(n),fit1(n)]=compare(ze,that1);
[comp2(n),fit2(n)]=compare(zv,that1);
V(n)=that1.EstimationInfo.LossFcn;
FPE(n)=that1.EstimationInfo.FPE;
AIC(n)=log(V(n))*np+2*2*n;
% Modify the AIC for ARMAX because we have n more free variables!
% i.e. AIC(n)=log(V(n))*np+3*2*n;
format short
end;

echo on
%b) Testing based on the covariance functions of the residuals
echo off
for n=1:nmax
 eval(['resid(TH' num2str(n) ',ze);']);
 subplot(211)
 txt=['autocorrelation of residual e, n=',num2str(n)];
 title(txt)
 subplot(212)
 txt=['crosscorrelation between e and u, n=',num2str(n)];
 title(txt)
 pause
end;

echo on
%c) measured output and model output
% for the estimation data set.
echo off
mm=min([100 np]);
for n=1:nmax
 subplot(320+n);
 plot(1:mm,[comp1{n}.y(1:mm),y(1:mm)]);
 title(['n = ',num2str(n),' Fit :',num2str(fit1(n))]);
 legend('y_m','y',0)
end;
pause
echo on
% measured output and model output
% for the validation data set.
echo off
for n=1:nmax
 subplot(320+n);
 plot(1:mm,[comp2{n}.y(1:mm),yv(1:mm)]);
 title(['n = ',num2str(n),' Fit :',num2str(fit2(n))]);
 legend('y_m','y',0)
Further aspects on model validation - Optional

end;
pause
echo on

%d) loss function, AIC and FPE
echo off
clf
subplot(311)
plot(1:nmax,V), title('loss function'), xlabel('n')
subplot(312)
plot(1:nmax,AIC), title('AIC'), xlabel('n')
subplot(313)
plot(1:nmax,FPE), title('FPE'), xlabel('n')
pause

clf
echo on
%e) pole-zero plot with confidence regions
% corresponding to 3 standard deviations.
echo off
for n=1:nmax
 eval(['zpplot(TH' num2str(n) ',3);']);
title(['Poles and zeros ARX, n = ',num2str(n)])
pause
end

2. Repeat the previous task but use now the prediction error method applied with an ARMAX model of order n. Use the same data set as before. Try some values of n, say $n = 1, \ldots, 4$. Apply the same validation procedures as before.

It may be convenient to edit the file compl2a to solve the task. Note that an ARMAX model (with one delay between u and y) can be estimated with $theta=armax([u y],[n n n 1])$.

What are your findings?

Answer: __

