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Abstract

Rékneuppgifter samt lite kompletterande teori.
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1 Lil-Linear regression

1.1 Problems

Problem 1. A linear trend model
a) Consider a linear regression model

J(t) = a + bt
Calculate the least squares estimate for the following two cases

1. The data are y(1),y(2), ... y(N). For this case, use S, = XN y(t), S =
Yl ty(t)

2. The data are y(—N),y(=N+1), ... y(N). For this case, use S, = >Ny y(t),
Si =2 nty(t)
Hints:
N(N +1)
2
N(N+1)(2N +1)

M=
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b) Suppose that the parameter a is estimated with

So
a = Wy case 1 above
So
= m, case 2 above

~

The parameter b is estimated by the least squares method using the model struc-
ture:
g(t) —a = bt

Calculate b for the two cases and compare with the estimate obtained in (a).
c) Assume that the data y(1),y(2), ... y(N) is generated by
Y(t) = a, + byt + e(t)

where e(t) is white noise with variance A. Calculate the variance of the quantity
s(t) = @ + bt. What is the variance for ¢ = 1 and ¢ = N? For which ¢ is the
variance minimal?

Hint:

Let 8 = (a b)T and p(t) = (1 t)I. Then

var s(t) = (t)" Po(t)

where P = var 6.

2) Some accuracy results for linear trend models



a) Assume that the data y(1),y(2), ... y(IN) is generated by
Y(t) = ao + bot + e(t)
where e(t) is white noise with variance A. The parameters in a linear trend model
9(t) = a + bt

are estimated with the least squares method. Calculate the variance of b.
b) Assume that we differenced the data and introduce a new signal

zt)=yt)—yit—1) t=2,3,..N
We then have that the data z(t) obeys
2(t) = b +wl(t) (1)

where the new noise source w(t) = e(t) — e(t — 1). The parameter b, may then be
estimated from the following model

2t =b

Calculate the variance of b and compare with the accuracy obtained in (2a).
Hint:

Note that the noise w(t) in (1) is not white. Hence the expression (??) need to be
used when calculating the variance.

3. The problem of collinearity.
Consider the following model

g(t) = auq (t) + bus(t)

Here wuy(t) and us(t) are two measured input signals. Suppose that the data is
generated by
y(t) = apuq + bug

where vy = K and us = L, that is two constant signals with amplitude K and
L are used as input signals. Show that det ®7'® = 0, and hence the least squares
method can not be used.

Remark:

The columns in ® must be linearly independent for (®7'®)~! to exist.

1.2 Solutions

1) In general we have

0= et O] Y w(t)y(t) = [@7 2] 'e"Y (2)

t=1 t=1

For the considered model § = (a b)T, and ¢ = (1 ).

Case (i). Data y(1),...,y(N).
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Zi\;l 1 Z:t]\il t - So . N NIN+D) -1 S,
Yot Yt S| N(Jg+1) N(N+1§(2N+1) S,
(202N + 1), — 68)]
& 281 — (N +1)8)]

N(N-1)(N+1

Case (ii). Data —y(N),...,y(N). This gives 2N + 1 data points. All sums will
have the form YN .

. ON +1 0 S, s~ 00
9:[ 0 w] [Sllzl—m 75 )51] (3)

3 N+1)(2N+1

b)
The model y(t) — a = bt gives the least squares estimate

Xi(ylt)—a)  Si—ayt

B:
>t Xt

case (i):

A 3
b= v DaN 25 - (V+ DS

which is not equal to the solution in a) and is therefore wrong.

case (ii):
Si—0 3
>t2 N(N+1)(2N +1)

which is equal to the solution in a) and is therefore correct.

c)

b= S,

P =AY et)p" ()] = A

t=1

-1
[ No1oxNt ]

N N(N+1) -1
Sitose ] l

NN+ N(VED@NT1)
2 6
(4)
Straightforward calculations using the P above and ¢ = (1 t)’give

12X
N(N+1)(N—1)

(N+1)(2N +1)
6 ]

var s(t) = o(t)! Pp(t) = (> —t(N + 1)+

and
12X N+1)2N+1 4\
var s(1) = NNEDWV =) [12—1(N+1)+( i )é i )] o when N is large
12 N+1)2N +1
var s(N) = N+ 1))EN Y [Nz—N(N+1)+( * )é * )] = var s(1) ~ ~ when N is large

The t giving minimal variance is obtained by setting

d 12X

W= ST o)

2t — (N +1)] =0

5



which gives t = % Hence, the minimal variance is in the middle of the observa-

tion interval. Furthermore
N+1y_ 12\ [QV+U{jN+&F+QV+U@N+Uy_i
2 7 N(N+1)(N-1) 4 2 6 N

var s(

For large data sets, the standard deviation decreases from 2\ﬂ)\ /N) at s(1) and
s(N) to \ﬂ)\/N) in the middle of the interval.

2) For a linear regression we have that

p(t)e’ ()]

WE

covl = A[®T®] ! = A[

t

Il
A

For a linear trend ¢ = (1 t)”. This gives

-1 N(N+1) -1
5 Yl Tt ] [ N
covl = A =A
l SNt RN N(]\;—i—l) N(N+1z(2N+1)

The variance of b is then found (the matrix above need to be inverted) to be

12
)\N(szl)'

b) When the data is differentiated we have that the system is
z(t) = b, + w(t)
where w(t) = e(t) — e(t — 1). We have
Ry(0) = E{w(t)} = E{[e(t) —e(t — 1]’} = 2)

Ry(1) = B{w(t+1wt)} = E{(e(t +1) —e(t))(e(t) —e(t — 1))} = =\
Rok) = 0 k>1

The noise is not white and in order to calculate the variance we need to calculate
R = E{ww"} where w = (w(1),w(2), ..., w(N —1))". See Section 4.3 in ”Linear
regression”. Note that when the data is differentiated one data point is lost. We
have

2 -1 0
-1 2 0
R=A\ .
|
0 -1 2
For the model z(¢) = b we have ¢(t) = 1 and ® = (1, ..., 1) (with N — 1 rows).

We can now calculate the variance of b (the least squares estimate) from the
covariance matrix (which becomes the variance since 6 is a scalar)

1 1 2
2 =\
N-1"N—-1 7(N-1) (5)

covl = varb = (07®) 10T RO(PT D) = )



It is easily seen that this expression is larger than the one in a).

3) We have ¢(t) = (u1(t) ug(t))T, with u;(t) = K and uy(t) = L. We assume the
number of data to be N. This gives the (/V|2) matrix:

K L
¢ = Do
K L
and

NK? NKL
Ted —
= [NKL NL? ]

We then see that det(®T®) = 0 and hence the LS method can not be used. It is
not possible to determine the parameters uniquely from this data set (which also
should be intiutively clear).

2 L2-Stochastic processes and discrete time sys-
tem

2.1 Problems

1. Static gain and stability.
Consider the discrete time system

0.1+ 1g~t

y(t) = H(q)u(t), where H(q) = 10247

Calculate, poles, zeros and static gain of the system. Is the system stable?

2. Spectrum.
The following stochastic process is given:

y(t) —0.2y(t — 1) = e(t) — 0.1e(t — 1)
where e(t) is white noise with zero mean and variance \.
a) Determine the spectrum of y; ®,(w).

b) Determine the cross spectrum @, (w).

3. Covariance function and spectrum.
Consider the following system

-1

y(t) = Higu(t), where H(g) = 11~

The input signal has the following covariance function R, (0) = 1, R, (1) = R,(—1) =
0.5, R, (1) = 0 for |7| > 1. Calculate the spectrum of the output signal.



4. Covariance functions
Calculate the covariance function for the following stochastic processes where e(t)
is white noise with variance A.

a)
y(t) =e(t) + ce(t — 1)

b)
y(t) +ay(t =1) =e(t) |af <1

2.2 Solutions

1)
0.1+1¢7"  0.1¢+1

H(q) — —
@ =102, 7-02
0.1z+1
H(z) = z+
z2—0.2
We immediately see that the system has one zero in z = —10 and one pole in

z = 0.2. Informally we could as well solve the roots with the g-operator (but not
with ¢~ '-operator).

The static gain is obtained by setting ¢ = 1 (or z = 1). We have H(1) = %1tl —
1.1/0.8

The system is stable since all poles are inside the unit circle.

2) We can write the system as

1—-0.1q7"t _q¢—0.1
1—-02¢! ¢—02

H(q) =
a) First note that since e(t) is white noise whith variance A ®.(w) = \. By using

Oy (w) = [H(e™)[*Pe(w)
we get

&, (w )_| 01| \ (“’—O.l)(e*i“’—o.l))\_ 1.01 — 0.2 cos(w)
—0.2 (e —0.2) (e~ —0.2)"  1.04 — 0.4 cos(w)

b) The cross spectra for a discrete time system H(q) is given by
Oye(w) = H(e™) e (w)

which directly gives

e — 0.1
(I)ye(w) = m)\

3) The definition of spectral density (spectrum) is

k=00
= > Ru(k)e ™"

k=—o00



The given covariance function gives
P, (w) = 0.5 + 14 0.5e™ = 1 + cos(w)
and the output spectral density is
b b b?(1 + cos(w))

P, (w) = |H(™Py(w) = H(e")H (e ™) Py (w) = civ g e—iw + a(H—COS( w)) = 1+ a? + 2a cos(w)

4 a) The MA(1) process is
y(t) = e(t) + ce(t — 1)
and we directly get

R,(0) = Ey*(t) = E(e(t) + ce(t — 1))(e(t) + ce(t — 1)) = (14 *)A
Ry(1) = Ey(t+1)y(t)=E(e(t+1)+ce(t))(e(t) +ce(t—1)) =cA
Ry(k) = Ey(t+k)yt) =E(e(t+ k) + ce(t + k — 1)) (e(t) + ce(t — 1)) =0, for k > 1

b) The covariance function for the AR(1) process

y(t) —ay(t =1) =e(t) |a] <1

can be solved (this also holds for a general AR(n) process) by the so called Yule
Walker equations (not a course requirement). Basically the idea is to multiply the
AR process with y(t — k) and take expectations. We have to distinguish between
k=0,and k£ > 0. For £k =0 we get

y()(y(t) +ay(t — 1)) = e(t)y(?)

Taking expectations give
R,(0) +aRy(1) = A

For k£ > 0 we get
y(t — k) (y(t) +ay(t — 1)) = e(t)y(t — k)

Taking exectations give
Ry(k)+aRy(k—1)=0

We hence end up with a Iset of linear equations. For £k =0, 1 we get

(D) RE)-(0) L

with solution

Ry(O) - 1 —)\a?

R = (o)
It is easy to see that

Ry(K) = (~a) =2



2.3 Egenskaper kovariansfunktioner

Lat z(t) vara en stokastisk stationir' process med medelvirde Exz(t) = 0. Pro-
cessens kovariansfunktion definieras av

R(1) = Elx(t + 7)x(t)]
Foljande relationer galler

o R(0) =+ R(r) > 0.

Bevis: Elz(t +7) £ x(t)]? = E[z(t + 7)]* + 2E[z(t)]> £ 2E[z(t + 7)z(t)] =
R(0) + R(0) + 2R(7) = 2(R(0) &+ R(7)). Uttrycket E[z(t + 7) &+ x(¢)]* ar
alltid positivt alltsa ar aven R(0) £ R(7) positivt varav pastaendet foljer.

e R(0) > |R(7)|. Foljer direkt av ovanstaende bevis.

e R(—7) = R(7), dvs kovariansfunktionen ar symmetrisk kring origo.
Bevis R(—7) = Elz(t — 1)z(t)] = Elz(t)z(t — 7)) = sétt t = s+ 717 =
Elz(s +1)x(s)] = R(1).

e Om |R(7)| = R(0) for nagot 7 # 0 sa ar x(t) periodisk.Bevis: utlammnas.

Korskovariansfunktionen beskriver samvariatonen mellan tva stokastiska processer
x(t) och y(t) och definieras

Ryy(1) = Elx(t + 7)y(t)]
Vi ger foljande relationer utan bevis:
o 1 (7) = Ryu(—7)
® Ry (T) # Ryy(—7) 1 allménhet.

o R, (1) =0 for alla 7 = x och y &r okorrelerade.

'En process ir stationir om dess egenskaper (fordelningar) ej beror av absolut tid.

10



2.4 Exempel kovariansfunktioner

Det ar inget tentakrav att kunna rédkna ut komplicerade kovariansfunktioner. Till
tentan ska man kunna rikna ut kovariansfunktionen for en MA process (av god-
tycklig ordning). Mera komplicerade kovariansuttryck ges som ledning,.

Nedan ges ett par exempel pa nagra mera komplicerade kaovariansuutryck. Som
vanligt betecknar e(t) vitt brus med medelvirde 0 och varians A. Vi anvander
ocksa Ry (k) = Ey(t + k)y(t).

ARMA(1,1) processen

y(t) +ay(t —1) =e(t) + ce(t — 1)

R,(0) — )\1 +1c2_;22ac
R,(1) — )\(c —la)_(la; ac)
R,(k) = A(—a)? (c _1“>_(1a2_ Lo

ARMAX(1,1,1) processen
y(t)+ay(t—1) =bu(t — 1) +e(t) + ce(t — 1)
Insignalen #r vit, med medelvirde 0 och varians Eu? = o
b’o + (1 + % — 2ac)\
1—a?

—ab*o + (¢ — a)(1 — ac)
1—a?

Ey(t)u(t) = 0
Ey(tu(t—1) = bo

Notera att b = 0 ger ARMA(1,1) processen och ¢ =0 ger en ARX(1,1) process.

11



3 L3 and L4-Parameter estimations

3.1 Problems

1) Criteria with constraints
Consider the following scalar non-linear minimization problem

mein Vi (0)

where
Ve(0) = ¢ S (1) — 3(t,0))

Jj=1

The following constraint is also given:

0<6<1

dVin (0)
dé

Assume that solutions to = () have been found. Describe how the minimiza-
tion problem should be solved in principle.

2) Calculating the least squares estimate for ARX models.
Consider the following ARX model:

y(t) +ay(t—1) =bu(t — 1) +e(t) (7)
(e(t) is white noise with zero mean)

Assume that available data are : y(1), u(1), y(2),u(2), ... ,y(102), u(102) and
the following sums have been calculated:

102 102 102
Yyt —1)=5.0, Dyt —1Lu(t—1)=1.0, Y u*(t—1) =10,
t=2 t=2 t=2

102 102

Syt —1) =45, 3 y(Hu(t—1) = 1.,

t=2 t=2

Which value of § = (a b)" minimizes the quadratic criteria
1 N
V() = % (1) — (0.
=2
where §(t,0) is the predictor obtained from the ARX model (7)?
3) Data with non zero mean.

Assume that the data from a system (normally the data is also noise corrupted
but that is not considered in this example) is given by

Alq)y(t) = Blq)u(t) + K (8)

where A(q) =1+ a1 '+, ... ;a,q ™, , B(q) = big '+, ... ,byqg ", and K is an
unknown constant.

12



a) Show that by using the following transformation of the data

AlQu(t) = (1—q u(t) =u(t) —u(t—1)
AlQy(t) = (1—q ylt) =ylt) —y(t—1)

as new input and output signals, the standard LS (least squares) method can be
used to find the parameters in A(q) and B(q).

b) Show that the constant K easily can be included in the LS estimate for the
model (8).

c) What is the standard procedure to deal with data with non zero mean?

4) The problem with feedback.
Consider the following system:

y(t) +ay(t—1) =bu(t — 1) + e(t) 9)
(e(t) is white noise with zero mean)

Assume that the system is controlled with a proportional controller
u(t) = —Ky(t)
Show that P = N | o(t)¢” (t) becomes singular!

5) Optimal input signal.
The following system is given:

y(t) = bou(t) + byu(t — 1) + e(t)
e(t) is white noise with zero mean and variance A.

The parameters are estimated with the least squares method. Consider the case
when the number of data points N goes to infinity (in practice, this means that
we have many data points available)

a) Show that var(b,) and var(b;) only depends on the following values of the
covariance function:



Determine R,(0) and R,(1) so that the variance of the parameter estimates are
minimized.

6) The following system is given:
y(t) = bru(t — 1) + bou(t — 2) + e(t)

e(t) is white noise with zero mean and variance A.
Assume that the number of data points goes to infinity.

a) Assume that u(t) is white noise? with variance o and zero mean. Show that the
least squares estimate converge to the true system parameters.

b) Assume that u(t) is a unit step: u(t) =0, <0, and u(t) = 1, ¢ > 1, show that
the matrix R = limy_,o + 1oy 0(£)¢” (t) becomes singular.

7) The following system is given:
y(t) = byu(t — 1) + bou(t — 2) + e(t)
e(t) is white noise with zero mean and variance A.

The following predictor
g(t) = bu(t — 1)

is used to estimate the parameter b with the least squares (LS) method.

Calculate the LS estimate of b (expressed in b; and by) as the number of data
points goes to infinity for the cases:

a) The input signal u(t) is white noise.

b) The input signal is a sinusoidal u(t) = Asin(w;t) wich has the covariance

function R, (7) = 342 cos(w:T)

2In general, we will also assume that e(t) and u(t) are uncorrelated if not explicitely stated
otherwise.

14



3.2 Solutions

1) Let 0; be the parameters which gives dvgg(a) = 0. Check the values of Vy(6;),
Vn(0) and V(1) and select the values of # which minimizes V.

2) The predictor for the ARX model is §(t) = ¢! (t)0 where
o(t) = (—y(t—1) u(t —1))" and 0 = (a b)". The least squares estimate is

0 = Do) ; p(t)y(t))

t=1 t

_ S22t 1) Yyt u(t—1) ] [ = 2%yt — Dy(t)
T oSy -Dut-1) D% 1) S0 u(t — 1)y 1)
I S e

o _—1 1 1

[ —0.875

© ] 0125

3a) Multiplying the left and right hand side of the system
Alq)y(t) = B(q)u(t) + K

with A(q) gives
Alq)Alq)y(t) = Alg) B(q)u(t) + Aq) K
but since K is a constant, A(q)K(1 — ¢ !)K == K — K = 0 and hence

Thus if we use the differentiated input and output signals we can use the standard
LS estimate to estimate A and B.

Remark: Any filter L(g) with L(1) = 0 would remove the constant K. Note that
L(1) = 0 means zero steady state gain.

b) Use the regression vector
ot)=(—y(t—1) —yt—2)...—y(t—n) uw(t—1) u(t—2)...ut—n) DT

and
9:(a1 as...0p b1 bgbn K)T

Note that we can view the system consisting of two input signals; u(¢) and 1.

¢) Remove the mean from the data, that is use the new signals:

50 = v~ L)
i) = u(t) - 3 ulk)



4a) We directly get

N
P:Zgo

1

[ thl Yy (t —1) KZivzl yz(t - 1) ]
KZivzl 92(t - 1) K? Zi\;l UQ(t - 1)

In the third equality we have used u(t) = —Ky(t).

) [ ztlyt—n —ziilyu—l)u(t—l)]
Zt 1?! 1) (t_l) Zi\;lqﬁ(t—l)

It is directly seen that the matrix is singular (det P = 0) hence this experimental
condition can not be used to estimate the parameters uniquely. This can also be
With the con-

seen if we look at the predictor g(t) = —ay(t — 1) + bu(t — 1).
—ay(t—1) —bKy(t—1) =

troller u(t) = —Ky(t) the predictor becomes §(t) =

—(bK+a)y(t—1) and we see that the predictor does not uniqely depends on a and b.

5) We have that (see Linear Regression)

cov(f) = )\[;cp(t)goT(t B :% ! ;QO
A s
= y®

With o(t) = (u(t) u(t — 1)) we get

and as N — oo

_>N—>oo

5 A[R(0) R,(1)]
cov(f) = £ [ Ru(1) R, (0) ]
Hence, ( )
~ 7 A Ru 0
var(bo) = var(h) = 7 Ty~ ()

2B ()"

(3™

b) It is seen directly (note that R,(0) > |R,(7)|) that the variances are minimized
for R,(0) =1 and R,(1) = 0. One example of a signal that fulfills this condition

is white noise with unit variance.

6) The predictor is given by 7(t) = ¢’ (¢)6 where
o) = (u(t—1) u(t—2))" and 0 = (by b)T.

The least squares estimate is (we normalize with % since we then get a feasible

expression as N — 00)

ZJilew Ol

As N = oo A -
boo = (R) ' E{o(t)y(t)}

16
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where R = E{p(t)" (t)} cf the previous problem.

’- l ) R ] | l Ry(2) ]

Since u(t is white noise R, (1) = 0 and

Ry (1) = Ey(t)u(t—1) = E{[biu(t — 1+ bou(t — 1) +e(t)Ju(t — 1)} = b1 R,(0)
Ry (2) = Ey(t)u(t—1) = E{[biu(t — 1+ bou(t — 1) + e(t)]u(t — 2)} = b2 R,(0)

the estimate converges to

= l R RV ] l Ao ] = [ Y ]

which is expected since we have a FIR model (wich could be interpreted as a linear
regression model) and model structure is correct.

b) We first calculate

1 Y T 1 SN uP(t—1) SN u(t — Du(t —2)
w2 P07 0 ﬂziii(t—l)u(t—z) S (- ) ]
1 [N-1 N-2] [5+ &2
T N|N-2 N-2| | X2 A2

and we see that
A 11
111
which is singular. This means that a step gives too poor excitation of the system,

asymptotically the matrix (which should be inverted in the least squares method)
becomes singular.

7) In this case ¢(t) = (u(t — 1)) and § = b. Asymptotically in N we have

b = [B{p(t)e" ()} E{p(y(t)}
For this simple predictor we have:
E{po(t)p" (t)} = Eu’(t—1) = Ru(0)
E{e()y(t)} = Ey(t)u(t—1) = Ryu(1)
and by using the system generating the data
Ry, (1) = Ey(t)u(t—1) = E{[byu(t—1+bou(t—1)+e(t)|u(t—1)} = by R, (0)+b2 R, (1)
which gives

A

~ 1
9002 oo:bl—i—bQRU( )

R,(0)
a) If u(t) is white noise R, (1) = 0 and we get by = by.

b) For u(t) beeing a sinusoid, boo = by + by cOS W,

17



4 L5- Some additional problems

4.1 Complementary theory - Analysis of the least squares
estimate

4.1.1 Results from ”Linear Regression”

The accuracy result is based on the following assumptions:

Assumption Al.
Assume that the data are generated by (”the true system”):

y(t) = ()0, +e(t) t=1,...,N (10)

where e(t) is a nonmeasurable disturbances term to be specified below. In matrix
form, (10) reads
Y =00,+e (11)

where e = [e(1) ...e(N)]T.

Assumption A2.
It is assumed that e(t) is a white noise process® with variance \.

Assumption A3.
It is finally assumed that E{¢(t)e(s)} = 0 for all ¢ and s. This means that the
regression vector is not influenced (directly or indirectly) by the noise source e(t)

In the material ”Linear Regression” it was shown that if Assumptions A1-A3 hold
then

1. The least squares estimate 0 is an unbiased estimate of 6,, that is E{0} = 0,,.

2. The uncertainty of the least squares estimate as expressed by the covariance
matrix P is given by

P = co

e
N
= et

E{(0 - EO)(0 — EO)"} = E{(6—0,)(6 — 0,)"} = \(@"®) !

4.1.2 Results for the case when A3 does not hold
For the case when A3 does not hold we have that

1. The least squares estimate f is consistent:
0 — 0, as N — oo (12)

where NV is the number of data points.

3A white noise process e(t) is a sequence of random variables that are uncorrelated, have
mean zero, and a constant finite variance. Hence, e(t) is a white noise process if E{e(t)} = 0,
E{e*(t)} = A\, and E{e(t)e(j)} = 0 for t not equal to j.
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2. The covariance matrix P is given by

P =covf — %[E{g@(t)goT(t)}]l as N — oo (13)

Remarks:

e Two typical examples when A3 does not hold are when the system is an
AR-process or an ARX-process (we then have values of the output in the
regressor vector.

e The results only holds asymptotically in N. In practice this means that we
need to have many data (some hundreds are typically enough) points for the
estimate to be reliable (and also to get reliable estimate of the covariance
matrix).

e If the noise is not white the estimate will in general not be consistent (in
contrast to when A3 holds- see ”Linear Regression”).

e Results for general linear models are presented on page 297-299 in the text
book.
4.1.3 Bias, variance and mean squared error

Let 0 be a scalar estimate of the true parameter ,. The bias is defined as
bias(d) = E{A} — 0, (14)
The variance is given by
var(d) = B{(0 — E{6})*} (15)
The Mean Squared Error (MSE) is given by
MSE(#) = E{(0 — 0,)%} = var() + [bias(f)]? (16)

In practice we want to have an estimate with as small MSE as possible. In some
cases this may mean that we accept a small bias if the variance of the estimate
can be reduced.

4.2 Problems

1) Predictor using exponential smoothing

A simple predictor for a signal y(t) is the so-called exponential smoothing which
is given by

§(t) = ——=y(t - 1)

:1—aq

a) Show that if y(t) = m for all ¢, the predictor will in steady state (stationarity)
be equal to m.
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b) For which ARMA model is the predictor optimal?
Hint: Rewrite the predictor in the form ¢(¢) = L(q)y(t) and compare with the
predictor for an ARMA model A(q)y(t) = C(q)y(t).

2) Cross correlation for LS estimate of ARX parameters.
Consider the standard least squares estimate of the parameters in an ARX model:

A(q)y(t) = Blg)u(t) + e(t)

where A(q) = 1+ a1q¢7' + ... + anaq™™ och B(q) = big™' + ... + byg™ ™. The
estimate of the cross correlation between residuals and inputs is given by

1 N
= — et t—T
=

where e(t) = y(t) — §(t) = y(t) — ¢"(t)0 is the prediction error. Show that the
least squares estimate gives

A~

Ry(r)=0 1=1,2..nb

Hint: Show that the least squares estimate gives S~ | o(t)e(t) = 0.

3) The variance increases if more parameters than needed are estimated!
Assume that data from an AR(1) process (" The system”) is collected:

y(t) + ay(t — 1) = e(t)

where e(t) is white noise with zero mean and variance A. The system is stable
wich means that |a,| < 1

Consider the following two predictors

ML §(t) = —ay(t = 1)

M2 Q(t) = —aly(t - 1) - a2y(t - 2)

where the parameters for each predictor is estimated with the least squares method.

It can easily be shown that for M1: a — a, and for M2: a; — a, and ay — 0, as
the number of data points N — oo.

Hence both estimate gives consistent estimate. Show that the "price to pay” for
estimating too many parameters is that var(a,) > var(a) as N — oo.

Hint: For the AR(1) process we have that R, (k) = Ey(t + k)y(t) = (—a,)*R,(0),
k =1,2.. where R,(0) = 2

1—a2

4) Variance of parameters in an estimated ARX model.
Assume that data was collected from the following ARX process (" The system”)

y(t) + aoy(t — 1) = bou(t — 1)e(t)
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where e(t) is white noise with zero mean and variance A. The system is stable
wich means that |a,| < 1. The input signal is uncorrelated with e(t), and is white
noise with zero mean and variance o.

The parameters in the following predictor
g(t|f) = —ay(t — 1) + bu(t — 1)

are estimated with the least squares method.
Calculate the asymptotic (in number of data points N) variance of the parameter
estimates.
Hint:
bo + A
1—a?

R,(0) = Ey’(t) =
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4.3 Solutions

la) We rewrite the predictor in standard form

¢ '(1-a)
1—aq!

g(t) = y(t) = Lg)y(t)

The static gain is given by L(1) and since we have L(1) = 1 the steady state value
of the predictor will be §(t) = m.

b) For an ARMA process

the optimal predictor is

o Alq) B
g(t) = (1 - @)y(t) =(—+——"

Hence, we need to find A(q) and C(q) so that
Clg) —Alg) _¢'(1-a)

C(q) l—agt

which gives C(q) =1 —ag™' and A(q) =1—q¢7".

2) The least squares estimate is given by

0= [; p(t)e" ()] ; p(t)y(t))
which can be written as
D e (010 = e(t)y(t) (17)

Soe(e(t) = Y eBly(t) — " (18] = 3 w(t)y(t) — 3 w(t)e” (£)]0

t=1 t=1 t=1 t=1
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This means that all estimates

Z u(t—7)) =0 forT=1,2..nb

t=1

Therefore, the values of the estimated cross correlation function Re,(7) for 7 =
1,2...nb can not be used to determine if an estimated ARX model is good or bad.
They will always be zero. See also the text book on page 368!

3) In general we have for estimated AR-parameters that
A~ A
P =covf — N[E{cp(t)goT(t)}]_l as N — oo

For M1 we have ¢(t) = —y(t — 1) and E{p(t)pT(t)} = Ey*(t—1) = R,(0) = 25
(see the Hint). Thus

Al —a? 1
var(d)—)N )\aO:N(l—a)asN—)oo

For M2 we have (t) = [-y(t — 1) —y(t —2)]" and therefore

) 12(0)
This gives
T -1 _ 1 Ry(o) _Ry(l)

[E{<P(t)90 (t)}] - Ry(0)2 _ Ry(1)2 ( —Ry(l) Ry(O) >

and
X A R,(0) P R,(0) A 1
var(a;) — NR,(0)2—R,(1)2 N R,(0)2—a2R,(0)2 N R,(0)(1— a2)
= % as N — oo

We have thus shown that var(a;) > var(a) as N — oo.
4) The predictor gives p(t) = [—y(t — 1) u(t — 1)]T and § = [a b]*. This gives
Ry(0)  —Ryu(0) )
E{o(t)e" (1)} = v v
woetor=( B0
The cross covariance between y and u is

Ryu(0) = E{(—aoy(t — 1) + bou(t — 1) +e(t))(u(t))} = 0

since u(t) is white noise (uncorrelated with e(t)). The (asymptotic) covariance
matrix is
-1 2
R A bzza—i-/\ 0 A 1-aZ 0
P=covf— —| 1-4 — | bZo+A as N — oo
N ( 0 o N 1

From the diagonal elements we get the variances: var(a) =
(as N — o0).

A
Nb2 +/\
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