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Abstract

Räkneuppgifter samt lite kompletterande teori.
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1 L1-Linear regression

1.1 Problems

Problem 1. A linear trend model
a) Consider a linear regression modelŷ(t) = a + bt
Calculate the least squares estimate for the following two cases

1. The data are y(1); y(2); ::: y(N). For this case, use So =
PNt=1 y(t), S1 =PNt=1 ty(t)

2. The data are y(�N); y(�N+1); ::: y(N). For this case, use So =
PNt=�N y(t),S1 =

PNt=�N ty(t)
Hints: NXt=1

t =
N(N + 1)

2NXt=1

t2 =
N(N + 1)(2N + 1)

6

b) Suppose that the parameter a is estimated withâ =
SoN ; case 1 aboveâ =
So

2N + 1
; case 2 above

The parameter b is estimated by the least squares method using the model struc-
ture: ŷ(t)� â = bt
Calculate b̂ for the two cases and compare with the estimate obtained in (a).

c) Assume that the data y(1); y(2); ::: y(N) is generated byy(t) = ao + bot + e(t)
where e(t) is white noise with variance �. Calculate the variance of the quantitys(t) = â + b̂t. What is the variance for t = 1 and t = N? For which t is the
variance minimal?
Hint:
Let � = (a b)T and '(t) = (1 t)T . Then

var s(t) = '(t)TP'(t)
where P = var �̂.
2) Some accuracy results for linear trend models

3



a) Assume that the data y(1); y(2); ::: y(N) is generated byy(t) = ao + bot + e(t)
where e(t) is white noise with variance �. The parameters in a linear trend modelŷ(t) = a + bt
are estimated with the least squares method. Calculate the variance of b̂.
b) Assume that we differenced the data and introduce a new signalz(t) = y(t)� y(t� 1) t = 2; 3; :::N
We then have that the data z(t) obeysz(t) = bo + w(t) (1)

where the new noise source w(t) = e(t)� e(t� 1). The parameter bo may then be
estimated from the following model ẑ(t) = b
Calculate the variance of b̂ and compare with the accuracy obtained in (2a).
Hint:
Note that the noise w(t) in (1) is not white. Hence the expression (??) need to be
used when calculating the variance.

3. The problem of collinearity.
Consider the following model ŷ(t) = au1(t) + bu2(t)
Here u1(t) and u2(t) are two measured input signals. Suppose that the data is
generated by y(t) = aou1 + bu2

where u1 = K and u2 = L, that is two constant signals with amplitude K andL are used as input signals. Show that det ΦTΦ = 0, and hence the least squares
method can not be used.
Remark:
The columns in Φ must be linearly independent for (ΦTΦ)�1 to exist.

1.2 Solutions

1) In general we have�̂ = [
NXt=1

'(t)'T (t)]�1
NXt=1

'(t)y(t)) = [ΦTΦ]�1ΦTY (2)

For the considered model � = (a b)T , and ' = (1 t)T .

Case (i). Data y(1); : : : ; y(N).

4



�̂ =

" PNt=1 1
PNt=1 tPNt=1 t PNt=1 t2 #�1 " SoS1

#
=

" N N(N+1)
2N(N+1)

2
N(N+1)(2N+1)

6

#�1 " SoS1

#
=

" 1N(N�1)
[2(2N + 1)So � 6S1]

6N(N�1)(N+1)
[2S1 � (N + 1)So] #

Case (ii). Data �y(N); : : : ; y(N). This gives 2N + 1 data points. All sums will
have the form

PNt=�N .�̂ =

"
2N + 1 0

0 N(N+1)(2N+1)
3

#�1 " SoS1

#
=

"
1

2N+1
So

3N(N+1)(2N+1)
S1

#
(3)

b)
The model y(t)� â = bt gives the least squares estimateb̂ =

P t(y(t)� â)P t2 =
S1 � âP tP t2

case (i): b̂ =
3N(N + 1)(2N + 1)

[2S1 � (N + 1)So]
which is not equal to the solution in a) and is therefore wrong.

case (ii): b̂ =
S1 � 0P t2 =

3N(N + 1)(2N + 1)
S1

which is equal to the solution in a) and is therefore correct.

c)P = �[
NXt=1

'(t)'T (t)]�1 = � " PNt=1 1
PNt=1 tPNt=1 t PNt=1 t2 #�1

= � " N N(N+1)
2N(N+1)

2
N(N+1)(2N+1)

6

#�1

(4)
Straightforward calculations using the P above and ' = (1 t)Tgive

var s(t) = '(t)TP'(t) =
12�N(N + 1)(N � 1)

[t2 � t(N + 1) +
(N + 1)(2N + 1)

6
]

and

var s(1) =
12�N(N + 1)(N � 1)

[12�1(N+1)+
(N + 1)(2N + 1)

6
] � 4�N when N is large

var s(N) =
12�N(N + 1)(N � 1)

[N2�N(N+1)+
(N + 1)(2N + 1)

6
] = var s(1) � 4�N when N is large

The t giving minimal variance is obtained by settingddtvar s(t) =
12�N(N + 1)(N � 1)

[2t� (N + 1)] = 0
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which gives t = N+1
2

. Hence, the minimal variance is in the middle of the observa-
tion interval. Furthermore

var s(N + 1

2
) =

12�N(N + 1)(N � 1)
[
(N + 1)2

4
� (N + 1)2

2
+

(N + 1)(2N + 1)

6
] =

�N
For large data sets, the standard deviation decreases from 2

q
(�=N) at s(1) ands(N) to

q
(�=N) in the middle of the interval.

2) For a linear regression we have that

cov�̂ = �[ΦTΦ]�1 = �[
NXt=1

'(t)'T (t)]�1

For a linear trend ' = (1 t)T . This gives

cov�̂ = � " PNt=1 1
PNt=1 tPNt=1 t PNt=1 t2 #�1

= � " N N(N+1)
2N(N+1)

2
N(N+1)(2N+1)

6

#�1

The variance of b̂ is then found (the matrix above need to be inverted) to be� 12N(N2�1)
.

b) When the data is differentiated we have that the system isz(t) = bo + w(t)
where w(t) = e(t)� e(t� 1). We haveRw(0) = Efw2(t)g = Ef[e(t)� e(t� 1)]2g = 2�Rw(1) = Efw(t+ 1)w(t)g = Ef(e(t + 1)� e(t))(e(t)� e(t� 1))g = ��Rw(k) = 0 k > 1

The noise is not white and in order to calculate the variance we need to calculateR = EfwwTg where w = (w(1); w(2); : : : ; w(N � 1))T . See Section 4.3 in ”Linear
regression”. Note that when the data is differentiated one data point is lost. We
have R = � 266664 2 �1 : : : 0�1 2 : : : 0

...
. . . �1

0 : : : �1 2

377775
For the model ˆz(t) = b we have '(t) = 1 and Φ = (1; : : : ; 1)T (with N � 1 rows).

We can now calculate the variance of b̂ (the least squares estimate) from the
covariance matrix (which becomes the variance since �̂ is a scalar)

cov�̂ = varb̂ = (ΦTΦ)�1ΦTRΦ(ΦTΦ)�1 = � 1N � 1
2

1N � 1
= � 2

(N � 1)2
(5)
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It is easily seen that this expression is larger than the one in a).

3) We have '(t) = (u1(t) u2(t))T , with u1(t) = K and u2(t) = L. We assume the
number of data to be N . This gives the (N j2) matrix:

Φ =

2664 K L
...

...K L 3775
and

ΦTΦ =

" NK2 NKLNKL NL2

#
We then see that det(ΦTΦ) = 0 and hence the LS method can not be used. It is
not possible to determine the parameters uniquely from this data set (which also
should be intiutively clear).

2 L2-Stochastic processes and discrete time sys-

tem

2.1 Problems

1. Static gain and stability.
Consider the discrete time systemy(t) = H(q)u(t); where H(q) =

0:1 + 1q�1

1� 0:2q�1

Calculate, poles, zeros and static gain of the system. Is the system stable?

2. Spectrum.
The following stochastic process is given:y(t)� 0:2y(t� 1) = e(t)� 0:1e(t� 1)

where e(t) is white noise with zero mean and variance �.

a) Determine the spectrum of y; Φy(!).

b) Determine the cross spectrum Φye(!).

3. Covariance function and spectrum.
Consider the following systemy(t) = H(q)u(t); where H(q) =

bq�1

1 + aq�1

The input signal has the following covariance function Ru(0) = 1, Ru(1) = Ru(�1) =
0:5, Ru(�) = 0 for j� j > 1. Calculate the spectrum of the output signal.
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4. Covariance functions
Calculate the covariance function for the following stochastic processes where e(t)
is white noise with variance �.

a) y(t) = e(t) + 
e(t� 1)

b) y(t) + ay(t� 1) = e(t) jaj < 1

2.2 Solutions

1) H(q) =
0:1 + 1q�1

1� 0:2q�1
=

0:1q + 1q � 0:2H(z) =
0:1z + 1z � 0:2

We immediately see that the system has one zero in z = �10 and one pole inz = 0:2. Informally we could as well solve the roots with the q-operator (but not
with q�1-operator).
The static gain is obtained by setting q = 1 (or z = 1). We have H(1) = 0:1+1

1�0:2 =
1:1=0:8
The system is stable since all poles are inside the unit circle.

2) We can write the system asH(q) =
1� 0:1q�1

1� 0:2q�1
=
q � 0:1q � 0:2

a) First note that since e(t) is white noise whith variance � Φe(!) = �. By using

Φy(!) = jH(eiw)j2Φe(!)

we get

Φy(!) = jei! � 0:1ei! � 0:2 j2� =
(ei! � 0:1)(e�i! � 0:1)

(ei! � 0:2)(e�i! � 0:2)
� =

1:01� 0:2 cos(!)

1:04� 0:4 cos(!)
�

b) The cross spectra for a discrete time system H(q) is given by

Φye(!) = H(eiw)Φe(!)

which directly gives

Φye(!) =
ei! � 0:1ei! � 0:2�

3) The definition of spectral density (spectrum) is

Φu(!) =
k=1Xk=�1Ru(k)e�i!k
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The given covariance function gives

Φu(!) = 0:5e�i! + 1 + 0:5ei! = 1 + cos(!)

and the output spectral density is

Φy(!) = jH(eiwj2Φu(!) = H(eiw)H(e�iw)Φu(!) =
beiw + a be�iw + a(1+cos(!)) =

b2(1 + cos(!))

1 + a2 + 2a cos(!)

4 a) The MA(1) process is y(t) = e(t) + 
e(t� 1)

and we directly getRy(0) = Ey2(t) = E(e(t) + 
e(t� 1))(e(t) + 
e(t� 1)) = (1 + 
2)�Ry(1) = Ey(t+ 1)y(t) = E(e(t + 1) + 
e(t))(e(t) + 
e(t� 1)) = 
�Ry(k) = Ey(t+ k)y(t) = E(e(t + k) + 
e(t + k � 1))(e(t) + 
e(t� 1)) = 0; for k > 1

b) The covariance function for the AR(1) processy(t)� ay(t� 1) = e(t) jaj < 1

can be solved (this also holds for a general AR(n) process) by the so called Yule
Walker equations (not a course requirement). Basically the idea is to multiply the
AR process with y(t� k) and take expectations. We have to distinguish betweenk = 0, and k > 0. For k = 0 we gety(t)(y(t) + ay(t� 1)) = e(t)y(t)
Taking expectations give Ry(0) + aRy(1) = �
For k > 0 we get y(t� k)(y(t) + ay(t� 1)) = e(t)y(t� k)

Taking exectations give Ry(k) + aRy(k � 1) = 0

We hence end up with a lset of linear equations. For k = 0; 1 we get 
1 aa 1

! Ry(0)Ry(1)

!
=

 �
0

!
(6)

with solution Ry(0) =
�

1� a2Ry(1) = (�a)
�

1� a2

It is easy to see that Ry(k) = (�a)jkj �
1� a2
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2.3 Egenskaper kovariansfunktioner

L̊at x(t) vara en stokastisk stationär1 process med medelvärde Ex(t) = 0. Pro-
cessens kovariansfunktion definieras avR(�) = E[x(t + �)x(t)]
Följande relationer gäller� R(0)� R(�) � 0.

Bevis: E[x(t + �) � x(t)]2 = E[x(t + �)]2 + 2E[x(t)]2 � 2E[x(t + �)x(t)] =R(0) + R(0) � 2R(�) = 2(R(0) � R(�)). Uttrycket E[x(t + �) � x(t)]2 är
alltid positivt allts̊a är även R(0)�R(�) positivt varav p̊ast̊aendet följer.� R(0) � jR(�)j. Följer direkt av ovanst̊aende bevis.� R(��) = R(�), dvs kovariansfunktionen är symmetrisk kring origo.

Bevis R(��) = E[x(t � �)x(t)] = E[x(t)x(t � �)] = sätt t = s + � =E[x(s + �)x(s)] = R(�).� Om jR(�)j = R(0) för n̊agot � 6= 0 s̊a är x(t) periodisk.Bevis: utlämmnas.

Korskovariansfunktionen beskriver samvariatonen mellan tv̊a stokastiska processerx(t) och y(t) och definieras Rxy(�) = E[x(t + �)y(t)]
Vi ger följande relationer utan bevis:� Rxy(�) = Ryx(��)� Rxy(�) 6= Rxy(��) i allmänhet.� Rxy(�) = 0 för alla � ) x och y är okorrelerade.

1En process är stationär om dess egenskaper (fördelningar) ej beror av absolut tid.
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2.4 Exempel kovariansfunktioner

Det är inget tentakrav att kunna räkna ut komplicerade kovariansfunktioner. Till
tentan ska man kunna räkna ut kovariansfunktionen för en MA process (av god-
tycklig ordning). Mera komplicerade kovariansuttryck ges som ledning.

Nedan ges ett par exempel p̊a n̊agra mera komplicerade kaovariansuutryck. Som
vanligt betecknar e(t) vitt brus med medelvärde 0 och varians �. Vi använder
ocks̊a Ry(k) = Ey(t+ k)y(t).
ARMA(1,1) processen y(t) + ay(t� 1) = e(t) + 
e(t� 1)Ry(0) = �1 + 
2 � 2a


1� a2Ry(1) = �(
� a)(1� a
)
1� a2Ry(k) = �(�a)k�1 (
� a)(1� a
)

1� a2
; k > 1

ARMAX(1,1,1) processeny(t) + ay(t� 1) = bu(t� 1) + e(t) + 
e(t� 1)

Insignalen är vit, med medelvärde 0 och varians Eu2 = �Ry(0) =
b2� + (1 + 
2 � 2a
)�

1� a2Ry(1) =
�ab2� + (
� a)(1� a
)�

1� a2Ey(t)u(t) = 0Ey(t)u(t� 1) = b�
Notera att b = 0 ger ARMA(1,1) processen och 
 = 0 ger en ARX(1,1) process.
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3 L3 and L4-Parameter estimations

3.1 Problems

1) Criteria with constraints
Consider the following scalar non-linear minimization problem

min� VN(�)
where VN (�) =

1N NXj=1

(y(t)� ŷ(t; �))2

The following constraint is also given:

0 � � � 1

Assume that solutions to dVN (�)d� = 0 have been found. Describe how the minimiza-
tion problem should be solved in principle.

2) Calculating the least squares estimate for ARX models.
Consider the following ARX model:y(t) + ay(t� 1) = bu(t� 1) + e(t) (7)

(e(t) is white noise with zero mean)

Assume that available data are : y(1); u(1); y(2); u(2); ::: ; y(102); u(102) and
the following sums have been calculated:

102Xt=2

y2(t� 1) = 5:0; 102Xt=2

y(t� 1)u(t� 1) = 1:0; 102Xt=2

u2(t� 1) = 1:0;
102Xt=2

y(t)y(t� 1) = 4:5; 102Xt=2

y(t)u(t� 1) = 1:0;
Which value of � = (a b)T minimizes the quadratic criteriaVN(�) =

1N NXt=2

(y(t)� ŷ(t; �))2

where ŷ(t; �) is the predictor obtained from the ARX model (7)?

3) Data with non zero mean.
Assume that the data from a system (normally the data is also noise corrupted
but that is not considered in this example) is given byA(q)y(t) = B(q)u(t) + K (8)

where A(q) = 1 + a1q�1+; : : : ; anq�n, , B(q) = b1q�1+; : : : ; bnq�n, and K is an
unknown constant.
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a) Show that by using the following transformation of the data

∆(q)u(t) = (1� q�1)u(t) = u(t)� u(t� 1)

∆(q)y(t) = (1� q�1)y(t) = y(t)� y(t� 1)

as new input and output signals, the standard LS (least squares) method can be
used to find the parameters in A(q) and B(q).
b) Show that the constant K easily can be included in the LS estimate for the
model (8).

c) What is the standard procedure to deal with data with non zero mean?

4) The problem with feedback.
Consider the following system:y(t) + ay(t� 1) = bu(t� 1) + e(t) (9)

(e(t) is white noise with zero mean)

Assume that the system is controlled with a proportional controlleru(t) = �Ky(t)
Show that P =

PNt=1 '(t)'T (t) becomes singular!

5) Optimal input signal.
The following system is given:y(t) = bou(t) + b1u(t� 1) + e(t)e(t) is white noise with zero mean and variance �.

The parameters are estimated with the least squares method. Consider the case
when the number of data points N goes to infinity (in practice, this means that
we have many data points available)

a) Show that var(b̂o) and var(b̂1) only depends on the following values of the
covariance function:Ru(0) = Eu2(t) = limN!1 1N NXk=1

u2(k)Ru(1) = Eu(t)u(t� 1) = limN!1 1N NXk=1

u(k)u(k � 1)

b) Assume that the energy of the input signal is constrained toRu(0) = Eu2(t) = limN!1 1N NXk=1

u2(k) � 1

13



Determine Ru(0) and Ru(1) so that the variance of the parameter estimates are
minimized.

6) The following system is given:y(t) = b1u(t� 1) + b2u(t� 2) + e(t)e(t) is white noise with zero mean and variance �.
Assume that the number of data points goes to infinity.

a) Assume that u(t) is white noise2 with variance � and zero mean. Show that the
least squares estimate converge to the true system parameters.

b) Assume that u(t) is a unit step: u(t) = 0, t � 0, and u(t) = 1, t � 1, show that
the matrix R̄ = limN!1 1N PNt=1 '(t)'T (t) becomes singular.

7) The following system is given:y(t) = b1u(t� 1) + b2u(t� 2) + e(t)e(t) is white noise with zero mean and variance �.

The following predictor ŷ(t) = bu(t� 1)

is used to estimate the parameter b with the least squares (LS) method.

Calculate the LS estimate of b (expressed in b1 and b2) as the number of data
points goes to infinity for the cases:

a) The input signal u(t) is white noise.

b) The input signal is a sinusoidal u(t) = A sin(!1t) wich has the covariance
function Ru(�) = 1

2
A2 cos(!1�)

2In general, we will also assume that e(t) and u(t) are uncorrelated if not explicitely stated
otherwise.

14



3.2 Solutions

1) Let �i be the parameters which gives dVN (�)d� = 0. Check the values of VN(�i),VN(0) and VN(1) and select the values of � which minimizes V .

2) The predictor for the ARX model is ŷ(t) = 'T (t)� where'(t) = (�y(t� 1) u(t� 1))T and � = (a b)T . The least squares estimate is�̂ = [
NXt=1

'(t)'T (t)]�1
NXt=1

'(t)y(t))
=

" P102t=2 y2(t� 1) �P102t=2 y(t� 1)u(t� 1)�P102t=2 y(t� 1)u(t� 1)
P102t=2 u2(t� 1)

#�1 " �P102t=2 y(t� 1)y(t)P102t=2 u(t� 1)y(t) #
=

"
5 �1�1 1

#�1 " �4:5
1

#
=

" �0:875
0:125

#
3a) Multiplying the left and right hand side of the systemA(q)y(t) = B(q)u(t) + K
with ∆(q) gives

∆(q)A(q)y(t) = ∆(q)B(q)u(t) + ∆(q)K
but since K is a constant, ∆(q)K(1� q�1)K == K �K = 0 and henceA(q)(∆(q)y(t)) = B(q)(∆(q)u(t))
Thus if we use the differentiated input and output signals we can use the standard
LS estimate to estimate A and B.

Remark: Any filter L(q) with L(1) = 0 would remove the constant K. Note thatL(1) = 0 means zero steady state gain.

b) Use the regression vector'(t) = (�y(t� 1) � y(t� 2) : : :� y(t� n) u(t� 1) u(t� 2) : : : u(t� n) 1)T
and � = (a1 a2 : : : an b1 b2 : : : bn K)T
Note that we can view the system consisting of two input signals; u(t) and 1.

c) Remove the mean from the data, that is use the new signals:ȳ(t) = y(t)� 1N NXk=1

y(k)ū(t) = u(t)� 1N NXk=1

u(k)
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4a) We directly getP = [
NXt=1

'(t)'T (t)]
=

" PNt=1 y2(t� 1) �PNt=1 y(t� 1)u(t� 1)�PNt=1 y(t� 1)u(t� 1)
PNt=1 u2(t� 1)

#
=

" PNt=1 y2(t� 1) KPNt=1 y2(t� 1)KPNt=1 y2(t� 1) K2PNt=1 y2(t� 1)

#
In the third equality we have used u(t) = �Ky(t).
It is directly seen that the matrix is singular (detP = 0) hence this experimental
condition can not be used to estimate the parameters uniquely. This can also be
seen if we look at the predictor ŷ(t) = �ay(t � 1) + bu(t � 1). With the con-
troller u(t) = �Ky(t) the predictor becomes ŷ(t) = �ay(t � 1) � bKy(t � 1) =�(bK+a)y(t�1) and we see that the predictor does not uniqely depends on a and b.
5) We have that (see Linear Regression)

cov(�̂) = �[
NXt=1

'(t)'T (t)]�1 =
�N [

1N NXt=1

'(t)'T (t)]�1 !N!1 �N [[Ef'(t)'T (t)g]�1

=
�N (R̄)�1

With '(t) = (u(t) u(t� 1))T we getR̄ =

" Ru(0) Ru(1)Ru(1) Ru(0)

#
and as N !1

cov(�̂) =
�N " Ru(0) Ru(1)Ru(1) Ru(0)

#�1

Hence,

var(b̂o) = var(b̂1) =
�N Ru(0)R2u(0)� R2u(1)

b) It is seen directly (note that Ru(0) � jRu(�)j) that the variances are minimized
for Ru(0) = 1 and Ru(1) = 0. One example of a signal that fulfills this condition
is white noise with unit variance.

6) The predictor is given by ŷ(t) = 'T (t)� where'(t) = (u(t� 1) u(t� 2))T and � = (b1 b2)T .
The least squares estimate is (we normalize with 1N since we then get a feasible
expression as N !1)�̂ =

1N [
1N NXt=1

'(t)'T (t)]�1
NXt=1

'(t)y(t))
As N !1 �̂1 = (R̄)�1Ef'(t)y(t)g
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where R̄ = Ef'(t)'T (t)g cf the previous problem.�̂ =

" Ru(0) Ru(1)Ru(1) Ru(0)

#�1 " Ryu(1)Ryu(2)

#
Since u(t is white noise Ru(1) = 0 andRyu(1) = Ey(t)u(t� 1) = Ef[b1u(t� 1 + b2u(t� 1) + e(t)]u(t� 1)g = b1Ru(0)Ryu(2) = Ey(t)u(t� 1) = Ef[b1u(t� 1 + b2u(t� 1) + e(t)]u(t� 2)g = b2Ru(0)

the estimate converges to�̂1 =

"
1=Ru(0) 0

0 1=Ru(0)

# " Ru(0)b1Ru(0)b2

#
=

" b1b2

#
which is expected since we have a FIR model (wich could be interpreted as a linear
regression model) and model structure is correct.

b) We first calculate

1N NXt=1

'(t)'T (t) =
1N " PNt=1 u2(t� 1)

PNt=1 u(t� 1)u(t� 2)PNt=1 u(t� 1)u(t� 2)
PNt=1 u2(t� 1)

#
=

1N " N � 1 N � 2N � 2 N � 2

#
=

" N�1N N�2NN�2N N�2N #
and we see that R̄ =

"
1 1
1 1

#
which is singular. This means that a step gives too poor excitation of the system,
asymptotically the matrix (which should be inverted in the least squares method)
becomes singular.

7) In this case '(t) = (u(t� 1)) and � = b. Asymptotically in N we have�̂1 = [Ef'(t)'T (t)g]�1Ef'(t)y(t)g
For this simple predictor we have:Ef'(t)'T (t)g = Eu2(t� 1) = Ru(0)Ef'(t)y(t)g = Ey(t)u(t� 1) = Ryu(1)

and by using the system generating the dataRyu(1) = Ey(t)u(t�1) = Ef[b1u(t�1+b2u(t�1)+e(t)]u(t�1)g = b1Ru(0)+b2Ru(1)

which gives �̂1 = b̂1 = b1 + b2
Ru(1)Ru(0)

a) If u(t) is white noise Ru(1) = 0 and we get b̂1 = b1.

b) For u(t) beeing a sinusoid, b̂1 = b1 + b2 cosw1

17



4 L5- Some additional problems

4.1 Complementary theory - Analysis of the least squares

estimate

4.1.1 Results from ”Linear Regression”

The accuracy result is based on the following assumptions:

Assumption A1.

Assume that the data are generated by (”the true system”):y(t) = 'T (t)�o + e(t) t = 1; : : : ; N (10)

where e(t) is a nonmeasurable disturbances term to be specified below. In matrix
form, (10) reads Y = Φ�o + e (11)

where e = [e(1) : : : e(N)]T .

Assumption A2.

It is assumed that e(t) is a white noise process3 with variance �.

Assumption A3.

It is finally assumed that Ef'(t)e(s)g = 0 for all t and s. This means that the
regression vector is not influenced (directly or indirectly) by the noise source e(t)
In the material ”Linear Regression” it was shown that if Assumptions A1-A3 hold
then

1. The least squares estimate �̂ is an unbiased estimate of �o, that is Ef�̂g = �o.
2. The uncertainty of the least squares estimate as expressed by the covariance

matrix P is given byP = cov �̂ = Ef(�̂ � E�̂)(�̂ � E�̂)Tg = Ef(�̂ � �o)(�̂ � �o)Tg = �(ΦTΦ)�1

= �[
NXt=1

'(t)'T (t)]�1

4.1.2 Results for the case when A3 does not hold

For the case when A3 does not hold we have that

1. The least squares estimate �̂ is consistent:�̂ ! �o as N !1 (12)

where N is the number of data points.

3A white noise process e(t) is a sequence of random variables that are uncorrelated, have
mean zero, and a constant finite variance. Hence, e(t) is a white noise process if Efe(t)g = 0,Efe2(t)g = �, and Efe(t)e(j)g = 0 for t not equal to j.
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2. The covariance matrix P is given byP = cov �̂ ! �N [Ef'(t)'T (t)g]�1 as N !1 (13)

Remarks:� Two typical examples when A3 does not hold are when the system is an
AR-process or an ARX-process (we then have values of the output in the
regressor vector.� The results only holds asymptotically in N . In practice this means that we
need to have many data (some hundreds are typically enough) points for the
estimate to be reliable (and also to get reliable estimate of the covariance
matrix).� If the noise is not white the estimate will in general not be consistent (in
contrast to when A3 holds- see ”Linear Regression”).� Results for general linear models are presented on page 297-299 in the text
book.

4.1.3 Bias, variance and mean squared error

Let �̂ be a scalar estimate of the true parameter �o. The bias is defined as

bias(�̂) = Ef�̂g � �o (14)

The variance is given by

var(�̂) = Ef(�̂ � Ef�̂g)2g (15)

The Mean Squared Error (MSE) is given by

MSE(�̂) = Ef(�̂ � �o)2g = var(�̂) + [bias(�̂)]2 (16)

In practice we want to have an estimate with as small MSE as possible. In some
cases this may mean that we accept a small bias if the variance of the estimate
can be reduced.

4.2 Problems

1) Predictor using exponential smoothing

A simple predictor for a signal y(t) is the so-called exponential smoothing which
is given by ŷ(t) =

1� �
1� �q�1

y(t� 1)

a) Show that if y(t) = m for all t, the predictor will in steady state (stationarity)
be equal to m.
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b) For which ARMA model is the predictor optimal?
Hint: Rewrite the predictor in the form ŷ(t) = L(q)y(t) and compare with the
predictor for an ARMA model A(q)y(t) = C(q)y(t).
2) Cross correlation for LS estimate of ARX parameters.
Consider the standard least squares estimate of the parameters in an ARX model:A(q)y(t) = B(q)u(t) + e(t)
where A(q) = 1 + a1q�1 + ::: + anaq�na och B(q) = b1q�1 + ::: + bnbq�nb. The
estimate of the cross correlation between residuals and inputs is given byR̂�u(�) =

1N NXt=1

�(t)u(t� �))

where �(t) = y(t) � ŷ(t) = y(t) � 'T (t)�̂ is the prediction error. Show that the
least squares estimate givesR̂�u(�) = 0 � = 1; 2:::nb
Hint: Show that the least squares estimate gives

PNt=1 '(t)�(t) = 0.

3) The variance increases if more parameters than needed are estimated!
Assume that data from an AR(1) process (”The system”) is collected:y(t) + aoy(t� 1) = e(t)
where e(t) is white noise with zero mean and variance �. The system is stable
wich means that jaoj < 1

Consider the following two predictors

M1 ŷ(t) = �ay(t� 1)

M2 ŷ(t) = �a1y(t� 1)� a2y(t� 2)

where the parameters for each predictor is estimated with the least squares method.

It can easily be shown that for M1: â ! ao and for M2: â1 ! ao and â2 ! 0, as
the number of data points N !1.

Hence both estimate gives consistent estimate. Show that the ”price to pay” for
estimating too many parameters is that var(â1) > var(â) as N !1.
Hint: For the AR(1) process we have that Ry(k) = Ey(t + k)y(t) = (�ao)kRy(0),k = 1; 2:: where Ry(0) = �

1�a2o
4) Variance of parameters in an estimated ARX model.
Assume that data was collected from the following ARX process (”The system”)y(t) + aoy(t� 1) = bou(t� 1)e(t)
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where e(t) is white noise with zero mean and variance �. The system is stable
wich means that jaoj < 1. The input signal is uncorrelated with e(t), and is white
noise with zero mean and variance �.

The parameters in the following predictorŷ(tj�) = �ay(t� 1) + bu(t� 1)

are estimated with the least squares method.
Calculate the asymptotic (in number of data points N) variance of the parameter
estimates.
Hint: Ry(0) = Ey2(t) =

b2o� + �
1� a2o
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4.3 Solutions

1a) We rewrite the predictor in standard formŷ(t) =
q�1(1� �)

1� �q�1
y(t) = L(q)y(t)

The static gain is given by L(1) and since we have L(1) = 1 the steady state value
of the predictor will be ŷ(t) = m.

b) For an ARMA process A(q)y(t) = C(q)e(t)
the optimal predictor isŷ(t) = (1� A(q)C(q))y(t) = (

C(q)� A(q)C(q) )y(t)
Hence, we need to find A(q) and C(q) so thatC(q)� A(q)C(q) =

q�1(1� �)

1� �q�1

which gives C(q) = 1� �q�1 and A(q) = 1� q�1.

2) The least squares estimate is given by�̂ = [
NXt=1

'(t)'T (t)]�1
NXt=1

'(t)y(t))
which can be written as

[
NXt=1

'(t)'T (t)]�̂ =
NXt=1

'(t)y(t)) (17)

With �(t) = y(t)� 'T (t)�̂ we getNXt=1

'(t)�(t) =
NXt=1

'(t)[y(t)� 'T (t)�̂] =
NXt=1

'(t)y(t)� [
NXt=1

'(t)'T (t)]�̂
=

NXt=1

'(t)y(t)� NXt=1

'(t)y(t) = 0

In the last equality (17) was used. We thus have

0 =
NXt=1

'(t)�(t) =
NXt=1

26666666666666664
�y(t� 1)�y(t� 2)

...�y(t� na)u(t� 1)u(t� 2)

...u(t� nb)
37777777777777775 �(t)
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This means that all estimatesR̂�u(�) =
1N NXt=1

�(t)u(t� �)) = 0 for � = 1; 2:::nb
Therefore, the values of the estimated cross correlation function R̂�u(�) for � =
1; 2:::nb can not be used to determine if an estimated ARX model is good or bad.
They will always be zero. See also the text book on page 368!

3) In general we have for estimated AR-parameters thatP = cov �̂ ! �N [Ef'(t)'T (t)g]�1 as N !1
For M1 we have '(t) = �y(t� 1) and Ef'(t)'T (t)g = Ey2(t� 1) = Ry(0) = �

1�a2o
(see the Hint). Thus

var(â) ! �N 1� a2o� =
1N (1� a2o) as N !1

For M2 we have '(t) = [�y(t� 1) � y(t� 2)]T and thereforeEf'(t)'T (t)g =

 Ry(0) Ry(1)Ry(1) Ry(0)

!
This gives

[Ef'(t)'T (t)g]�1 =
1Ry(0)2 � Ry(1)2

 Ry(0) �Ry(1)�Ry(1) Ry(0)

!
and

var(â1) ! �N Ry(0)Ry(0)2 � Ry(1)2
=

�N Ry(0)Ry(0)2 � a2oRy(0)2
=

�N 1Ry(0)(1� a2o)
=

1N as N !1
We have thus shown that var(â1) > var(â) as N !1.

4) The predictor gives '(t) = [�y(t� 1) u(t� 1)]T and � = [a b]T . This givesEf'(t)'T (t)g =

 Ry(0) �Ryu(0)�Ryu(1) Ru(0)

!
The cross covariance between y and u isRyu(0) = Ef(�aoy(t� 1) + bou(t� 1) + e(t))(u(t))g = 0

since u(t) is white noise (uncorrelated with e(t)). The (asymptotic) covariance
matrix isP = cov �̂ ! �N  b2o�+�

1�a2o 0

0 � !�1

=
�N  

1�a2ob2o�+� 0

0 1� !
as N !1

From the diagonal elements we get the variances: var(â) = �N 1�a2ob2o�+� and var(b̂) = �N�
(as N !1).
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