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Some practical aspects

Preparation exercises:

1. Read the lab instructions carefully.
2. Read Sections 12.4 and 14.3 (including the example 14.2)
3. Check the ideas behind Grey-box modelling (“skräddarsytt”),

see Section 14.4 and Example 14.3
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1 Goals

In this computer lab you will investigate some various problems, namely:� The effect on non zero means in the data. The understanding of this problem
is very important in the project work!� System identification as a way of model approximation when the model struc-
ture is not rich enough to describe the true dynamics. In particular, the use
of prefiltering of the data in order to get a good model accuracy in a certain
frequency region will be studied.� Estimation of physical parameters.

2 Effect of non zero means

In this first task the aim is to illustrate the effect on non zero means both on the
input and output signal.

The least squares method, LSM, is used for identifying a system given by

(1� 0:8q�1)yo(t) = 1:0q�1u(t) + e(t)y(t) = yo(t) + m
The input signal is white noise (plus an offset, see point 3 below) independent of the
white noise e(t), which has zero mean and a small variance �2 = 0:012. The parameterm is used to describe a non zero mean value (offset) of y which is not due to the input.

The system is simulated using 100 data points. An ARX model of order 2 is estimated
using the least squares method. Consider the following cases

1. Both the input and output have zero means (i.e. m = 0)

2. The input has zero means but m = 10.

3. The input has mean value 10 and m = 0 (due to the input, the output will then
also have a mean value different from zero).

Simulate the above cases. The file dctest.m printed below solves case 1. For case 2,
you need to add a the term 10 to y and repeat the estimation. For case 3 you need
to add 10 to u (but not to y) and simulate the system before making the estimation.
You need to edit the file accordingly.

u=randn(100,1); %Generate input signal

lambda=0.01; %Low noise level!

e=randn(100,1)*lambda; %Generate noise

B=[0 1]; A=[1 -0.8]; %System parameters

y=filter(B,A,u)+filter(1,A,e); % Simulate ARX system

th=arx([y u],[1 1 1]); %Estimate ARX model of correct order

present(th);



2 Effect of non zero means 2

Summarize your findings below. Did any case (except 1) gives a correct model?

Answer:

Give two approaches which can be used when you have data with non-zero mean
values which may cause bias in the estimated model parameters.

Answer:

Consider the following two modelling problems:� Estimation of a dynamic model from a system where it is known that u = 0
leads to y = 0. This is the case when the output is only affected by the input
and the sensor measuring the output is not ”biased”� Estimation of a dynamic model from a system where it is known that u = 0
not yields y = 0. This is the case when the output is affected by a constant
disturbance (for example, in the project you will not obtain a zero nitrate level
when the external carbon flow rate is zero) or when the sensor measuring the
output is ”biased”.

Which one of the above cases must be treated with care in the identification in order
not to give a biased estimate?

Answer:
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3 The use of prefiltering for weighting of accuracy in

frequency domain

In this task we will examine how system identification can be viewed as a form
of model approximation, when the system dynamics is too complex to belong the
model structure considered. To simplify the study we consider a noise–free situation.
Consider the following system, which has two distinct resonances.G(q�1) =

1:0q�2 � 1:3q�3 + 0:8q�4

(1� 1:5q�1 + 0:9q�2)(1 + 0:0q�1 + 0:9q�2)

Simulate the system using the input u(t) as white binary noise of zero mean and unit
amplitude. Generate 100 data points. Use the function gendata3 listed below.

%file gendata3.m

%Computer Laboratory 3

% Model approximation -- frequency domain effects

% Generating the data

num=[0 0 1 -1.3 0.8];

den=conv([1 -1.5 0.9],[1 0 0.9]);

[msys,psys,w]=dbode(num,den,1);

u=sign(randn(100,1));

y=filter(num,den,u);

z=[y u]; %This is for use in the graphical interface ident

Next we will study the estimation of second order ARMAX model using prefiltered
data. The following items will be studied.

1. The data will be filtered withuF (t) = F (q�1)u(t)yF (t) = F (q�1)y(t)
The filtering has the effect that we give emphasis to certain frequency ranges,
depending on the choice of the filter. Let F be a sharp bandpass filter around
one of the resonance frequencies of the true system. Use a 5’th order Butter-
worth filter. Do help butter in order to find out the syntax1 for this command.

A reasonable starting filter is obtained by the command

[nn,dd]=butter(5,[0.15 0.25]);

1Note in particular that the cut off frequency for the filter is normalized between 0 and 1, where 1
corresponds to the maximum frequency which in discret time is equal to � (for a sampled signal the
physical correspondence is half the sampling rate). The following example illustrates the case when
we want to low pass filter a sampled continuous time signal: Assume that the sampling frequencyfs = 1000 Hz and that we want to remove frequencies above 300 Hz. That is, the band with of
the filter should (in continuous time) be 300 Hz . The value Wn = 1 in the filter corresponds tofs=2 = 500 Hz. Hence we should chose Wn = 300=500 = 0:6 in the filter design.
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The prediction error method using the filtered data is then applied. The result
is evaluated in the frequency domain by drawing Bode plots of the model and
the true dynamics.

2. Repeat the previous subtask but for a filter which emphasizes the other reso-
nance frequency.

3. Repeat the previous subtask but let F be a low pass filter.

The estimation part of the task can be carried out by running the following Matlab
code. It is available as the file compl3e.

Note that you need to run butter first in order to get filter parameters.
We strongly recommend (good for the project work!) that you also try to solve the
task (or part of it) using the interface ident. Note that in ident you can also do
prefiltering (but where the filter bandwidth is between 0 and �)
Summarize your findings below.

Answer:

% Model approximation -- frequency domain effects

clf

%Estimation based on filtered data,

%Before the routine can be used, filter

%parameters must be calculated.

% Use for example a 5th order Butterworth filter.

% See help butter (but be happy!)

clg

filtnum=input(’Give filtnumerator with [] ’)

filtden=input(’Give filtdenominator with [] ’)

yf=filter(filtnum,filtden,y);

uf=filter(filtnum,filtden,u);

that1=armax([yf uf],[2 2 2 1])
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[a1,b1,c1]=polydata(that1)

[m1,p1]=dbode(b1,a1,1,w);

[mf,pf]=dbode(filtnum,filtden,1,w);

subplot(121)

loglog(w,m1,w,msys,’--’,w,mf,’:’)

axis([0.1,pi,0.1,10]);

title(’Frequency functions’);

xlabel(’Angular frequency’); ylabel(’Amplitude’);

txt=’filtnum: ’;

for j=1:length(filtnum);

txt=[txt,num2str(filtnum(j)),’ ’];

end

text(’Units’, ’normalized’);

text(0.20,0.25,txt,’sc’)

txt=’filtden: ’;

for j=1:length(filtden);

txt=[txt,num2str(filtden(j)),’ ’];

end

text(0.20,0.15,txt,’sc’)

subplot(122);

semilogx(w,p1,w,psys,’--’); hold off;

title(’Frequency functions’);

ylabel(’Phase’),xlabel(’Angular frequency’)

4 Estimation of physical parameters

As an example/illustration we will consider estimation the dynamics of a lake/reservoir
which net flow can be adjusted by some flood gates2. The example is very simple
but illustrate the general procedure on how to first use physical modelling and then
apply system identification to a model with hopefully few unknown parameters.

Consider a reservoir with a water level of h (assumed spatially constant), and an area
of A. By a simple mass balance we have thatAdhdt = q
where q is the net flow through the reservoir. In the Laplace domain we haveH(s) =

1AsQ(s)
Lets assume that the net flow can be adjusted by a flood gate with the following

2A remark: In the last years, we have had two MSc theses dealing with modelling and control of
irrigation water channels. The work were conducted in Univ of Melbourne Australia..
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dynamics Q(s) =
kgate

1 + sT U(s)
where U(s) is the Laplace transformation of the control signal to the gate. The gate
dynamic is hence a a fist order system with gain kgate and time constant T .

The (continuous-time) transfer function from control signal to water level is given byG(s) =
Ks(1 + sT )

where K = kgate=A and T are the parameters to be determined. In this example, it
is trivial to see that the gate gain and reservoir area can not be determined indepen-
dently. In the following we will study the estimation of K and T . If we know K and T
(from the procedure described below) but wants the area A we must determine kgate.
Describe a simple experiment how to determine kgate. It is assumed that during the
experiment Q can be measured.

Answer:

By choosing the level and net flow as state variables, we can represent the reservoir
dynamics in state space form asẋ =

 
0 1
0 �1=T !x +

 
0K=T !uy = (1 0)x

We assume that a white noise disturbance is affecting the measurements of the reser-
voir level.
A discrete time model for the reservoir is given byx(t + h) = Adx(t) + Bdu(t)y(t) = Cx(t) + e(t)
In order to generate the data for the identification experiment we will use the following
parameter values: K = 4; T = 0:5; h = 0:1timeunits

The input signal u(t) is a square wave. The amplitude of the square wave is 0.1, its
period is 8.0, and the total duration of the simulation is 80. The measurement noise
has standard deviation � = 0:1. Generate the data by running the file fysmod.

%file fysmod.m

%Computer Laboratory W4, Lab3
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%TS last rev 950405, Adapted for W4 by BC 990211

clear,clf

format compact

%Generate data for lake modelling

%Set parameters

K=4

T=0.5

ramp=1;

lambda=0.1;

a=0.5

h=0.1

tper=8

ttot=80

%Define model

A=[0 1;0 -1/T],B=[0;K/T],C=[1 0], D=0,

[Ad,Bd]=c2d(A,B,h)

%Generate input signal

time=0:h:ttot;

np=ttot/h;

rr=kron(ones(ttot/tper/2,1),[1;-1]);

u=kron(rr,ones(tper/h,1));

u=[1;u(:)]*.1;

% Simulate system

[y0,x]=dlsim(Ad,Bd,C,D,u);

e=randn(np+1,1)*lambda;

y=y0+e;

plot(time,[y,u]),title(’output and input’)

We shall now see how system identification can be used to estimate physical parame-
ters. Our interest is now to estimate the ’physical parameters’ T (the time constant)
and K from the data.

One approach would be to first identify a discrete-time (black box) transfer function
of the process. A typical model order choice is of second order, and has 4 parameters.
Hence, there is no unique way to derive K and T from the estimated model. It should
also be clear that even if the true system has a pure integrator, the estimated model
will have a pole that is only close to integrating (it will lie close to z = 1 in discrete
time).

We will instead consider estimation of the parameters K and T directly from data
by means of identification using the prediction error method. The model will not be
of black box type, but have some internal structure, and a few ’physical parameters’.
These parameters will be estimated by using the prediction error method, applied to
the parameterized model. The general PEM approach still holds, but the implemen-
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tation of how the loss function and its gradient are computed becomes more messy.
Fortunately for the user, the System Identification Toolbox provides appropriate fa-
cilities for handling such problems.

We will here consider the case when there is no coupling or constraint between the
model parameters. In this case we will consider the parameterizationẋ =

 
0 1
0 �1

!x +

 
0�2

!uy(t) = ( 1 0 )x(t) + e(t)
After we have identified the parameter vector � we can easily find the physical pa-
rameters as T = �1=�1 K = ��2=�1

Some Matlab code to run the estimation part is provided in the file compl3d. See also
iddemo nr 8 and help for the commands modstruc and ms2th. First some statements
for defining how the parameters enter the state space matrices are included. The
vector thguess contains the initial guesses of the parameter values.

%file compl3d.m

%Computer Laboratory 3

%System Identification

%TS last rev 950405, rev 990211 by BC, 040606 by EKL

%Estimation of physical parameters

%Define model structure

% Initial guess

Ai=[0 1;0 -1],Bi=[0; 1],Ci=[1 0],Di=0,

Ki=[0;0],xi=[0;0]

% Free parameters as NaN

Aest=[0 1;0 NaN],Best=[0; NaN],Cest=[1 0],Dest=0,

Kest=[0;0],xest=[0;0]

ms2=idss(Ai,Bi,Ci,Di,Ki,xi,’Ts’,0)

setstruc(ms2,Aest,Best,Cest,Dest,Kest,xest);

%Estimation

z = iddata(y,u,0.1);

thest=pem(z,ms2)

Test=-1/thest.A(2,2)

Kest=-thest.B(2)/thest.A(2,2)

Run the file above and summarise your findings below.



4 Estimation of physical parameters 9

Answer:


