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Abstract

This material is compiled for the course Empirical Modelling. Sections
marked with a star (∗) are not central in the courses. The main source of
inspiration when writing this text has been Chapter 4 in the book ”System
Identification” by Söderström and Stoica (Prentice Hall, 1989) which also
may be consulted for a more thorough treatment of the material presented
here. The book is available for free download here:
http://www.it.uu.se/research/syscon/Ident
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1 Introduction

Mathematical models are frequently used in both technical and non-technical ar-
eas. In this note we will give an overview of one of the most popular model
structures, namely linear regression models. In particular we will describe how the
parameters in a linear regression model can be fitted to recorded data by the least
squares method. Some statistical analyses are also provided

Linear regression has a long history and can be traced back (at least) to Gauss who
used such techniques for calculating orbits of planets. Since then, linear regression
has been used in numerous applications.

2 The linear regression model

Consider the following model structure:

ŷ(t) = ϕ1(t)θ1 + ϕ2(t)θ2 + . . .+ ϕn(t)θn = ϕT (t)θ (1)

where ŷ(t) is the output from the model, ϕ(t) = [ϕ1(t) ϕ2(t) . . . ϕn(t)]
T is

an n-dimensional column vector of known variables; “the regressors”, and θ =
[θ1 θ2 . . . θn]

T is an n-dimensional column vector of unknown parameters. The
transpose of a vector or matrix is denoted T . The argument t = 1, 2, 3 . . . is a
counter, which very often is used as a time index.

The problem to be discussed is, given a set of measured/observed data, denoted
y(t), to find (or rather estimate) the unknown parameter vector θ. The basic idea
is to ”fit” the model to the data, so that y − ŷ becomes small. The model should
hence give a good prediction of the measured data. Before treating this problem,
some examples of linear regression models are given.

2.1 Examples of linear regression models

Below we give a number of examples of models which can be written in the standard
form ŷ(t) = ϕ(t)T θ

• The polynomial trend:

ŷ(t) = ao + a1t + . . .+ ant
n

can be written as ŷ(t) = ϕ(t)T θ with

ϕ(t) = (1 t . . . tn)T

θ = (ao a1 . . . an)
T

• Sum of exponential functions:

ŷ(t) = b1e
−k1t + b2e

−k2t + . . .+ bne
−knt

Assume that k1, k2 . . . kn are known. We then have:

ϕ(t) = (e−k1t e−k2t . . . e−knt)T

θ = (b1 b2 . . . bn)
T
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• ”The gas law”. From basic thermodynamics we have

pV γ = C

p = V −γC

log p = −γ log V + logC

where p is the pressure, V is the volume, γ is the ratio of the specific heat
capacities, and C is a constant. Assume that p is measured, V is known,
and we want to find γ and C. Let ŷ = log p, we may then write the model
as a linear regression with

ϕ(t) = (− log V 1)T

θ = (γ logC)T

• The FIR-model (Finite Impulse Response)

ŷ(t) = bou(t) + b1u(t− 1) + . . .+ bnu(t− n)

⇒
ϕ(t) = (u(t) u(t− 1) . . . u(t− n))T

θ = (bo b1 . . . bn)
T

where u is the input signal and bo, . . . bn are the unknown parameters.
The basic FIR models can easily be expanded to cover more than one input
signal. One example of a FIR model with two input signals (u1 and u2) is:

ŷ(t) = b1,ou1(t) + b1,1u1(t− 1) + . . .+ b1,nu1(t− n)

+b2,ou2(t) + b2,1u2(t− 1) + . . .+ b2,nu2(t− n)

Make sure that you can write this model in the linear regression form (1).

• The ARX-model (AutoRegressive model with an eXternal input)

ŷ(t) = −a1y(t− 1)− a2y(t− 2)− . . .− anay(t− na)

+bou(t) + b1u(t− 1) + . . .+ bnbu(t− nb)

⇒
ϕ(t) = (−y(t− 1) − y(t− 2) . . .− y(t− na) u(t) u(t− 1) . . . u(t− nb))T

θ = (a1 a2 . . . ana bo b1 . . . bnb)
T

The output from the model is based on old measured data (y(t−1) etc) and
old input signals. This model is one of the most used models for estimating
dynamical systems. It will be described in more detail later in the course.
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3 The least squares method (Minsta kvadrat-

metoden)

Assume that a data set {y(t), ϕ(t)}t=1,...,N from a system has been collected. That
is, we have N samples from the system. Assume also that the system can be
described by a linear regression model (of known structure but unknown param-
eters). The problem then is to find a ”good” estimate of the unknown vector θ

given the measurements. Basically, we want to ”fit the model to the data” as good
as possible.

3.1 The loss function

In the least squares method, the following loss function is to be minimised with
respect to θ:

V (θ) =
N
∑

t=1

(y(t)− ŷ(t))2 =
N
∑

t=1

(y(t)− ϕT (t)θ)2 (2)

That is, we seek for a model that could ”predict” the real data as good (in a mean
squared sense) as possible. Note that the classical approach ”fitting a linear trend”
is one example of the least squares method.

It is natural to introduce the equation (or prediction) errors as ǫ(t) = y(t)− ŷ(t).
The loss function (2) can then be written as

V (θ) =
N
∑

t=1

ǫ(t)2

Remarks:

• If the data y(t) would be noise-free a natural choice would be to let N =
n, where n is the number of unknown parameters (that is the size of θ).
In practice, this is seldom the case! For example, to only use two points
to fit a linear trend would in most cases be very ”dangerous”. It hence
seems reasonable to chose N ≫ n. The choice of N will determine the
accuracy: a higher N gives more accurate model parameters (if the chosen
model structure is correct). The choice of N is to be discussed more in the
next section.

• It is common to write the loss function in normalised form as

V (θ) =
1

N

N
∑

t=1

(y(t)− ŷ(t))2

Obviously, this gives the same minimizing θ.

3.2 The least squares estimate

In this section we will give the solution to the least squares problem, that is, to
give an expression for the vector θ that minimizes the least squares criterion (2).
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We present the result as a Theorem:

Theorem 1. Assume that the matrix RN =
∑N

t=1 ϕ(t)ϕ
T (t) is invertible. The θ

that minimises V (θ) in (2) is given by :

θ̂ =

[

N
∑

t=1

ϕ(t)ϕT (t)

]−1 N
∑

t=1

ϕ(t)y(t) (3)

Proof. The proof is to simply set the first derivative (with respect to θ) of the loss
function to zero (or more precisely to a zero vector) and solve for the parameter
vector.

δV (θ)

δθ
= 2

N
∑

t=1

(y(t)− ϕT (t)θ)
−δϕT (t)θ

δθ
= −2

N
∑

t=1

(y(t)− ϕT (t)θ)ϕ(t)

= −2
N
∑

t=1

(ϕ(t)y(t)− ϕ(t)ϕT (t)θ)

In the last equality we have put ϕ(t) in front of the scalars y(t) and ϕT (t)θ. Next
we set the derivative equal to the zero vector:

δV (θ)

δθ
= 0

which gives
N
∑

t=1

ϕ(t)y(t)) =
N
∑

t=1

ϕ(t)ϕT (t)θ̂

Finally, solving for θ̂ (by multiplying with the inverse of RN from the left) gives
the least squares estimate (3). 2

Remarks:

• For all models that can be written as a linear regression, we have an analyt-
ical solution to the least squares problem (a few examples are given later).
The expression (3) is very easy to calculate with modern software ( for ex-
ample using Matlab) where also good numerical methods for calculating this
estimate are implemented. See also Section 3.3.

• To calculate ordinary least squares estimate (3) it is crucial that RN is in-
vertible. Situations when this does not hold (or almost does not hold) are
referred to ill-conditioned linear regression problems. This situation appears
when the regressors are colinear (or nearly colinear) which means that two
rows or columns of the matrix RN is (almost) similar. This is a common
problem in many practical applications! One way to solve ill conditioned
linear regression problems is to “remove” the part in RN that causes the
colinearity. This can, for example, be done by singular value decomposition.
We will not treat this problem here, but it will be discussed later in the
course.
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• It is common to write the least squares estimate in normalised form

θ̂ =

[

1

N

N
∑

t=1

ϕ(t)ϕT (t)

]−1
1

N

N
∑

t=1

ϕ(t)y(t)

This gives of course the same solution as (3) but often simplifies the analysis
when considering the case when the number of data points goes to infinity.

3.3 A matrix formulation

In this Section we will give a matrix presentation of the least squares method. It
is assumed (as before) that N measurements of y(t) and ϕ(t) are available. These
measurements can be written as a vector and a matrix by employing the notations:

Y =









y(1)
...

y(N)









Φ =









ϕT (1)
...

ϕT (N)









Similarly, the predicted output from the linear regression model

ŷ(t) = ϕ(t)T θ, t = 1, . . . , N

can be written
Ŷ = Φθ

where

Ŷ =









ŷ(1)
...

ŷ(N)









The loss function (2) can now be written

V (θ) = (Y − Φθ)T (Y − Φθ)

The θ that minimises V (θ) is given by :

θ̂ =

[

N
∑

t=1

ϕ(t)ϕT (t)

]−1 N
∑

t=1

ϕ(t)y(t)) = [ΦTΦ]−1ΦTY (4)

The last equality follows directly from

N
∑

t=1

ϕ(t)ϕT (t) = [ϕ(1)...ϕ(N)]









ϕT (1)
...

ϕT (N)









= ΦTΦ

and

N
∑

t=1

ϕ(t)y(t)) = [ϕ(1)...ϕ(N)]









y(1)
...

y(N)









= ΦTY

Remarks:
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• The least square estimate (4) is very easy to calculate in Matlab. You do
not need to write the whole expression in (4). Assume that the data matrix
Φ is stored in the variable Phi in Matlab. The least squares estimate is then
(note the use of the backslash operator) given by

>> theta_hat=Phi\Y

• In practice we may not have data to fill up the first rows in the Φ vector.
The trick is then to cut the rows that can not be filled with known data (and
also to cut the rows in the Y vector accordingly). This approach corresponds
to using the following loss function

V (θ) =
N
∑

t=n1

(y(t)− ϕT (t)θ)2 (5)

where n1 is chosen so ϕ(n1) contains known data (for example u(1) u(2)).
Note that using n1 = 1 for a FIR model would require u(0) u(−1) etc which
are NOT known. The choice of n1 depends on the model order.

3.4 Proof of the least squares estimate using matrix nota-
tions*

In this Section we will give an alternative proof of the least squares estimate using
the matrix formulation. The loss function may be rewritten as

V (θ) = (Y − Φθ)T (Y − Φθ) = Y TY − Y TΦθ − θTΦTY + θTΦTΦθ

By applying rules for differentiation of matrices (see Appendix A) the gradient can
be written as

δV (θ)

δθ
= −Y TΦ− Y TΦ+ 2θTΦTΦ = 2(θTΦTΦ− Y TΦ)

By setting the transpose of the gradient to zero

dV (θ)

dθ
|T = 0

it is seen that the least squares estimate is given by

θ̂ = [ΦTΦ]−1ΦTY

3.5 A simple example

The simplest example of a linear regression model is

ŷ(t) = m

This means that a constant m should be estimated from a number of measure-
ments. The model is represented by the standard notation ϕ(t) = 1 and θ = m

(see (1)). Assume that N data points, y(1), y(2) ... y(N) are available. We want
to estimate the constant m from available data using the least squares method.
The estimate is given by

θ̂ =

[

N
∑

t=1

ϕ(t)ϕT (t)

]−1 N
∑

t=1

ϕ(t)y(t) =

[

N
∑

t=1

1

]−1 N
∑

t=1

1 · y(t) = 1

N

N
∑

t=1

y(t)

which we recognize as the arithmetic mean of the measurements.
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3.6 Nonlinear regression models

The least squares method can also be used for nonlinear models. Consider the
model structure

ŷ(t) = g(ϕ(t), θ)

where g is some nonlinear functions. In order to estimate θ, the following loss
function can be used

V (θ) =
N
∑

t=1

[y(t)− g(ϕ(t), θ)]2

We then search for θ that minimises V (θ). This can be formally written as

θ̂ = argmin
θ

V (θ)

Remarks:

• In general no analytical solution exists instead a numerical (iterative) search
must be used.

• When using a numerical search routine, there is, in general, no guarantee
that the global minima is found. The search routine may stop at a local
minima.

• In Matlab the function fminsearch can be used for solving nonlinear regres-
sion problems. There is also a toolbox, Curve Fitting Toolbox.

4 Analysis

Above we have shown how the parameters in a linear regression model can be
estimated by the least squares method. An important question is what accuracy
the estimated parameters have. In order to answer such a question we need to
make assumptions on how the data (y(t)) are generated. In general, the accuracy
of the estimate will depend on the ”noise corruption” in the data as well as on the
number of data points used in the estimation.

4.1 The white noise case

In this Section we will treat the case when the noise is white. The accuracy result
is based on a number of assumptions that is presented next:

Assumption A1.
Assume that the data are generated by (”the true system”):

y(t) = ϕT (t)θo + e(t) t = 1, . . . , N (6)

where e(t) is a nonmeasurable disturbances term to be specified below. In matrix
form, (6) reads

Y = Φθo + e (7)
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where e = [e(1) . . . e(N)]T .

Assumption A2.
It is assumed that e(t) is a white noise process1 with variance λ.

Assumption A3.
It is finally assumed that E{ϕ(t)e(s)} = 0 for all t and s. This means that the
regression vector is not influenced (directly or indirectly) by the noise source e(t)

Assumption A3 simplifies the analyses considerable. When taking expectation
with respect to e(t) we have, for example,

E{ΦTΦe} = ΦTΦE{e}.

Theorem 2. If Assumptions A1-A3 hold then

1. The least squares estimate θ̂ is an unbiased estimate of θo, that is E{θ̂} = θo.

2. The variance of the parameters θ̂i, i = 1, 2, ... n in the estimated parameter
vector θ̂ is given by

P = cov θ̂ = E{(θ̂−Eθ̂)(θ̂−Eθ̂)T} = E{(θ̂−θo)(θ̂−θo)
T} = λ(ΦTΦ)−1 (8)

In particular we have for the i th parameter, varθ̂(i) = P (i, i), that is the
variance of the parameters can be found by inspecting the diagonal elements
of the covariance matrix P The uncertainty of the least squares estimate as
expressed by the covariance matrix P is given by

P = cov θ̂ = E{(θ̂−Eθ̂)(θ̂−Eθ̂)T} = E{(θ̂−θo)(θ̂−θo)
T} = λ(ΦTΦ)−1 (9)

3. An unbiased estimate of the variance of the noise λ is given by

λ̂ =
1

N − n
V (θ̂) (10)

where n is the number of parameters (n = dim θ) and N is the number of
data points.

Proof.

1. Proof of unbiasness:

E{θ̂} = E{[ΦTΦ]−1ΦTY } = E{[ΦTΦ]−1ΦT (Φθo+e)} = θo+[ΦTΦ]−1ΦTΦE{e} = θo

The last equality follows from the assumption (A2) that the mean value of
e = 0. Note that it is only required that E{e(t)} = 0 for the estimate to be
unbiased.

1A white noise process e(t) is a sequence of random variables that are uncorrelated, have
mean zero, and a constant finite variance. Hence, e(t) is a white noise process if E{e(t)} = 0,
E{e2(t)} = λ, and E{e(t)e(j)} = 0 for t not equal to j.
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2. Proof of the covariance expression:
First, note that

θ̂ = [ΦTΦ]−1ΦTY = [ΦTΦ]−1ΦT (Φθo + e) = [ΦTΦ]−1ΦTΦθo + [ΦTΦ]−1ΦTe

= θo + [ΦTΦ]−1ΦTe

Hence, θ̂ − θo = [ΦTΦ]−1ΦTe. We also have that E{θ̂} = θo. We then have

covθ̂ = E{(θ̂ − θo)(θ̂ − θo)
T} = E{[ΦTΦ]−1ΦTe([ΦTΦ]−1ΦTe)T}

= E{[ΦTΦ]−1ΦTeeTΦ[ΦTΦ]−1}

Now, using Assumption A3 the only expectation that is needed to calculate
is E{eeT} = E{[e(1); . . . e(N)]T [e(1); . . . e(N)]}. Further, since the noise
is assumed to be white, this matrix will be a diagonal matrix, where every
diagonal element has the value λ. Hence, E{eeT} = λI where I is the
identity matrix. We thus get

covθ̂ = [ΦTΦ]−1ΦTλIΦ[ΦTΦ]−1 = λ[ΦTΦ]−1ΦTΦ[ΦTΦ]−1 = λ[ΦTΦ]−1

3. The proof that λ̂ = 1
N−n

V (θ̂) is omitted here, but can be found in the book
System Identification (see the Abstract).

2

An important use of theorem 2
Let θ̂i, i = 1, ... n denotes the i’th component in the vector θ̂. We then have

var(θ̂i) = Pi,i i = 1, ... n (11)

where Pi,i denotes the i’th diagonal element in P . Hence the parameters can be
given a ”quality tag”. The covariance matrix P can be estimated from data using

P̂ = λ̂(ΦTΦ)−1

where λ̂ is obtained from (10).

Remarks:

• Note that we have assumed in Assumption A1 that the true system and the
model have the same structure ( ϕ(t) is the same). For example, if the model
is a linear trend we assume that the true system that has generated the data
is also a linear trend (but with an additional noise term).

• The signal e(t) in (6) typically represents measurement noise and/or process
disturbances and is commonly called ”noise”.

• When A3 holds, it is common to say that ϕ(t) is deterministic.

• If we assume that the noise e has a Gaussian distribution, θ̂ will also be
Gaussian

θ̂ ∈ N (θo, P )

11



and
θ̂(i)− θo(i)
√

P (i, i)
∈ N (0, 1)

Hence the probability that θ̂(i) deviates from θo(i) with more than α
√

P (i, i)

is the (1− α)-level of the normal distribution which is available in standard
statistical tables.

• One very important example when Assumption 3 does not hold is for the
ARX model (see Section 2.1). The ARX case will be analyzed later in the
course.

4.2 Accuracy of first order FIR model

Consider the following model
ŷ(t) = bu(t)

This corresponds to ϕ(t) = u(t) and θ = b. Assume that N data pairs,
y(1), u(1), ... y(N), u(N) are available. The least squares estimate is then given
by

θ̂ =

[

N
∑

t=1

ϕ(t)ϕT (t)

]−1 N
∑

t=1

ϕ(t)y(t) =

[

N
∑

t=1

u2(t)

]−1 N
∑

t=1

u(t)y(t) =
1

∑N
t=1 u

2(t)

N
∑

t=1

u(t)y(t)

If the assumptions used in Theorem 2 are fulfilled the variance of b̂ = θ̂ is given
by:

var(b̂) =
λ

∑N
t=1 u

2(t)

The variance decreases if

1. The number of data N increases,
or

2. The input signal energy is increased,
or

3. The noise level λ is decreased.

In general these three factors (number of data points, signal energy, and noise
level) will affect the quality of the estimated parameters.

4.3 Non white noise

Here, we will consider the case when the noise in not white. Assume that Assump-
tions A1 and A3 hold but Assumption A2 is generalized to:

Assumption A2gen.
The noise (”measurement noise”) e(t) in (6) has zero mean value but may be
correlated so that E{e(t)e(s)} 6= 0. Then we write E{eeT} = R where R is a
symmetric matrix describing the correlation of the noise.

Theorem 3. Assume that A1, A2gen and A3 hold, then
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1. The least squares estimate θ̂ is (still) an unbiased estimate of θo, that is
E{θ̂} = θo.

2. The covariance matrix of the least squares estimate is

covθ̂ = (ΦTΦ)−1ΦTRΦ(ΦTΦ)−1 (12)

3. If the noise correlation matrix R is known, a more accurate estimate than
the standard least squares estimate is possible. The method is known as
”BLUE” (Best Linear Unbiased Estimate) and is given by:

θ̂BLUE = (ΦTR−1Φ)−1ΦTR−1Y (13)

The covariance matrix of the BLUE is

covθ̂BLUE = (ΦTR−1Φ)−1 (14)

Remarks:

• It is worth stressing that the results in Theorem 3 do not hold for the
ARX model (see Section 2.1). In fact, for an ARX model, the estimated
parameters will be biased E{θ̂} 6= θo even when the number of data points
goes to infinity.

• The BLUE estimate (13) can be calculated with the Matlab function lscov.

Proof.

1. Proof of unbiasness: The result follows directly from the proof of Theorem
2 since the mean value of the noise is still zero.

2. Proof of the covariance expression:
Following the proof of Theorem 2 we have

covθ̂ = E{(θ̂ − θo)(θ̂ − θo)
T} = E{[ΦTΦ]−1ΦTe([ΦTΦ]−1ΦTe)T}

= E{[ΦTΦ]−1ΦTeeTΦ[ΦTΦ]−1}

Now using E{eeT} = R the results follows directly

3. The proof that BLUE has a lower covariance matrix than the least squares
method is omitted here, but can be found in the book System Identification
(see the Abstract).

2
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4.4 Example of the best linear unbiased estimate (BLUE)

Consider again the simple model

ŷ(t) = m

Assume that the data are obtained from the system

ŷ(t) = mo + e(t)

where noise is independent, has zero mean Ee(t) = 0, but a varying variance
Ee2(t) = λ(t). It is assumed that λ(t) is known. Assuming N measurements of y,
then

Φ =









1
...
1









R =













λ(1) 0 . . . 0
0 λ(2) . . . 0
...

. . . 0
0 . . . 0 λ(N)













The BLUE (see 13) of θo = mo is given by

θ̂ = (ΦTR−1Φ)−1ΦTR−1Y =
1

∑N
j=1

1
λ(j)

N
∑

i=1

1

λ(i)
y(i)

This is a weighted arithmetic mean of the measurements. The weight of y(i) in
the estimate is given by

θ̂ = (ΦTR−1Φ)−1ΦTR−1Y =
1

∑N
j=1

1
λ(j)

1

λ(i)

This weight is small if a measurement is inaccurate (meaning that λ(i) is large)
and vice versa. Note also that if the noise variance is constant λ(t) = λ then
the BLUE estimate becomes the ordinarily least squares estimate in the example
shown in Section 3.5

5 On the choice of model structure and model

order

An very crucial question in system identification is how to choose the model struc-
ture and the model order. Later in the course, this will be treated in detail. Let
us here, just give a few remarks. We will also briefly describes the most common
method to check the model quality, namely the the coefficient of determination R2.

Concerning the choice of model structure, two options are available:

1. Use physical insights. In some cases, knowledge of the system may give hints
of a suitable model structure.
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2. Try different model structures and use the one which could describe the data
”best” (or sufficiently good for the intended use of the model).

We need also to determine the model order (n=dim θ). In practise, this is done
by a combination of statistical test and common sense. Note that it is not a good
idea to try to find a model order that minimises the loss function (2) since the loss
function will decrease as the model order is increased. This will be illustrated in
the first computer laboratory work.

5.1 The coefficient of determination

The coefficient of determination R2, gives information of about the goodness of fit
of a model and is calculated as

R2 = 1− SSres

SStot
(15)

where

SSres =
N
∑

t=1

(y(t)− ŷ(t))2 (16)

SStot =
N
∑

t=1

(y(t)− ȳ)2 (17)

with ȳ = 1
N

∑N
t=1 y(t).

The coefficient of determination is the percent of the variation that can be ex-
plained by the model and is the ratio between the explained variation and the
total variation. The closer the value of R2 is to 1, the better the regression is. An
R2 of 1.0 indicates that the regression line perfectly fits the data. But remember
”Correlation does not imply causation”.

Remarks:

• In the System Identification Toolbox, R2 is called FIT and is given in per-
centage.

6 Principal component analysis*

Finally, we will give a very brief introduction to Principal Component Analysis
(PCA). This is a method which is used very often in practice (including several
recent Master thesis) and will also be a key topic in the first guest lecture.

PCA is a method to extract relevant information from a data set without using a
(explicit) model. In the following we will assume that the data has been organized
in a m|n matrix X . Typically, m is the number of measurements and n is the
number of dependant variables (for example sensors). The data must not come
from a technical process, it may for instance consists of demographic data where
m is the number of studied countries and n is the number of indicator variables.
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Each row may then consists of a countries BNP, population etc.

Frequently, one wants to find possible pattern in the data, and highlight differences
and similarities. This is not a trivial problem if m and n is large. One typical ex-
ample is process monitoring, suppose that we have measured a number of process
variables (pH, temperature etc) and want to find which variables are related to
each other. Or under what conditions are the process running in an optimal way.
This may be hard to find out by only looking at one variable (a column in the X

matrix) at the time. It may very well be so that an inspection of each variable
separately does not reveal any useful information.

PCA is a way to reduce the dimensionality of the problem (the X matrix). It is
obvious that with increasing dimensionality the data will be harder and harder to
visualize and to interpret. But “the underlying” dimension may be much smaller
than n. Consider for example, n = 3, this will correspond to a “cloud” in the
3D space, where each point represent a measurement. It might be so that all
points residue close to a common plane, that is the underlying dimension is two
and not three. What PCA basically does is to make a coordinate transformation
of the X matrix where the first coordinate axes gives the direction where the data
contain most information (variance), the second coordinate gives the second most
important direction etc. Hence we can see how many directions (dimension) that
is needed in order to describe the data sufficiently well. Not seldom, only two di-
mension is needed, and it is then possible to plot the transformed data in a 2D plot.

Mathematically, PCA is a method of writing a matrix X a sum of r matrices of
rank 1:

X = M1 +M2+; . . . +Ma + E

where E is the residual error matrix. The error E = 0 if a = r, where r is the
rank of the matrix X . In practice, a is chosen so that E is sufficiently small. The
matrices Mi can be written as the product of two vectors ti and pi as follows

X = t1p
T
1 + t2p

T
2 ; . . . + tap

T
a + E

or
X = TP T + E

where T is made up from the ti’s as columns and P is made up from the pi’s as
columns. The vectors ti are called scores and the vectors pi are called loadings.
To find T and P we can use a singular value decomposition (SVD) on X :

X = UDV

It can be shown that T = UD and P = V .

SVD is easy to do in for example Matlab. Dedicated toolboxes exists for more
advanced studies, for example the “PLS Toolbox” by Eigenvector.

One important aspect of PCA is that it is not scaling independent. If a variable
is measured in grams or kilo hence affect the results. In order to cope with this

16



the data must be scaled before the PCA. The standard procedure is to remove
the mean values from each column (mean centering) and divide each colum by the
column variance.

The literature on PCA (and related methods) is huge! By a web search you may
found numerous applications as well as detailed descriptions.

7 Concluding remarks

In this note we have given an introduction to linear regression and in particular
how the parameters in a linear regression model can be estimated with the least
squares method. The ideas presented here form the basics for ”System identifica-
tion methods”. We have seen that many types of models can be written as linear
regressions. The statistical analyses show how estimated models can be given a
”quality tag” (model accuracy in terms of variance). It has been noted though
that the very much used ARX-model does not fulfill the Assumptions used in the
derived accuracy results and hence requires a separate investigation (to be covered
later in the course).
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A Some matrix algebra

Here some important results from matrix algebra are summarised.

• For a symmetric matrix P it holds that P = P T

• (AB)T = BTAT

• Some properties of a positive definite matrix P (commonly written as P > 0):

– xTPx > 0 for all x > 0.

– All eigenvalues of P is larger than zero.

– detP > 0

Differentiation, let u be a column vector, then

d

du
uTPu = 2uTP if P symmetric

d

du
zTBu = zTB z = vector,B = matrix

d

du
uTBz = zTBT
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B N̊agra grundläggande statistiska begrepp

• Fördelningsfunktion för den stokastiska variabeln (s.v.) X defineras enligt
FX(x) = P (X ≤ x), dvs sannolikheten att den s.v. X är mindre än eller lika
med talet x.

• Täthetsfunktion fX(x) = derivatan av fördelningsfunktionen. Vi har att

P (a < X ≤ b) =
∫ b

a
fX(t)dt

• Normalfördelning X ∈ N(m, λ) har täthetsfunktionen

fX(x) =
1√
2πλ

e−(x−m)2/(2λ)

där m =medelvärdet och λ =variansen.

• Om fX,Y (x, y) = fX(x)fY (y) är de s.v. X och Y oberoende.

• Väntevärde (medelvärde): m = E{X} =
∫

∞

−∞
xfX(x)dx. E är en linjär

operator: E{aX + b} = aE{X}+ b.

• Varians2: V (X) = E{(X −m)2}. Vi har

V (X) = E{X2} − (E{X})2
V (aX + b) = a2V (X)

• Kovarians: Cov(X, Y ) = E{(X −mX)(Y −mY )}.

• Om Cov(X, Y ) = 0 är X och Y okorrelerade. Notera att obereoende medför
okorrelerade (men inte tvärtom).

2Standardavvikelse är kvadratroten av variansen.
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N̊agot om parameterskattningar (punktskattning)

• Om X1, . . .XN är oberoende och normalfördelade s.v. N(m, λ) s̊a är följande
skattning av medelvärdet

m̂ =
1

N

N
∑

i=1

Xi

normalfördelad och väntevärdesriktig dvs E{m̂} = m. Skattningens varians
ges av V (m̂) = λ

N
.

• L̊at θ̂(N) vara en skattning av den okända parametrn θo givet N stycken
observationer.Följande definitioner är centrala:

– Skattningens bias ges av b = E{θ̂(N)} − θo

– Skattningens varians v = E{(θ̂(N)−E{θ̂(N)})2}
– Medelkvadratfelet3 MSE= v + b2

– Asymptotisk väntevärdesriktig: E{θ̂(N)} → θo d̊a N → ∞.

– Konsistens: E{(θ̂(N)− θo)
2} → 0 d̊a N → ∞.

• Flerdimensionella s.v.

L̊atX = [X1, X2, . . . , Xn]
T vara en n-dimensionell s.v. D̊a ges väntevärdet av

m = E{X} = [EX1, EX2, . . . , EXn]
T . Kovarianvariansmatrisen definieras

V (X) = E{(X−m)(X−m)T } vilket är en symmetrisk och positiv semidefinit
n|n matris. Om Y = c+ AX är E{Y } = c+ AE{X} och VY = AV (X)AT .
En linjärkombination av en n-dimensionell normalfördelad s.v är ocks̊a nor-
malfördelad.

3Engelska: MSE-Mean Squared Error
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