Systems of Partial Differential Equations

Computer Lab 3

Introduction

It is very rare that a real life phenomenon can be modeled by a single partial
differential equation. Usually it takes a system of coupled partial differential
equations to yield a complete model. For example, let us say that we want
to compute the distribution of heat with a microwave oven. Then we must
first compute the electrical wave E that generate the heat. It is given by the
Helmholtz equation AE + w?E = 0, where w is the frequency of the wave.
Second, we must solve the Heat equation —AT = |E|? for the temperature
T within the oven. Since T" depends on E this is a coupled problem with two
partial differential equations. In this computer lab we study finite element
approximations of such problems.

Model Problem

We start by considering the model problem of finding u; and us such that

—Auy + cpuy + cpup = fi, inQ (la)
—Auy + cioUy + cpuy = f, in € (1b)
n-Vu; =0, on 0N (1c)
n-Vuy, =0, on o (1d)

where ¢;; > 0, 4,7 = 1,2, and f;, ¢ = 1,2, are given coefficients. As usual,
Q) C R? is assumed to be a domain with smooth boundary 9Q and outward
unit normal n.



Variational Formulation

Let
V= HY(Q) = {v: [Vo] + o]l < o0} (2)

Multiplying (1a) by a test function v; € V' and using partial integration we
have

(fi,v1) = (—Auy, v1) + (cr11u1 + c12ug, V1) (3)
= —(n . V’U,l, Ul)aQ + (Vul, Vvl) + (011u1 -+ C12U9, U1> (4)
= (VUl, V’Ul) -+ (611u1 + C12U9, ’Ul) (5)

where the boundary term (n-Vuy,v;) vanish due to the boundary condition.
Similarly, multiplying (1b) by another test function v, € V' and integrating
by parts yields

(f2,v2) = (Vug, Vo) + (ca1us + caauz, v2) (6)
Adding (5) and (6) give us the variational equation

(fi,v1) + (f2,v2) = (Vug, Vor) + (criug + ciaus, v1) (7)
+ (Vug, Vo) + (ca1uq + cootia, v2)

We shall now rewrite this using vector notation. To this end we introduce

the vectors
|l |
w=lul o=[ ®

We also need the gradient matrix for these vectors, defined by

. 8U1/8$1 801/85132
V’U— {81}2/8301 81}2/69&21 (9>

With this definitions we can write

(Vur, Vor) + (Vug, Vog) = > (Qui/dx, dvi/dx;) = (Vu: Vo) (10)

1,j=1



where we have introduced the colon operator : between two 2 x 2 matrices

A and B
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ij=1

Further, collecting the coefficients ¢;; into a matrix

C — [011 012] (12>
C21 C22
we can write the terms
(cr1u1 4 c1ouz,v1) + (€o1uy + Cogua, v9) = (Cu,v) (13)
Finally, we write
(f1,01) + (f2,02) = (f,v) (14)

Using vector notation the variation formulation of (1) reads: find u € V' =
V' x V such that

a(u,v) =1(v), YveV (15)

where the bilinear form a(-,-) and the linear form I(-) is defined by
a(u,v) = (Vu : Vo) + (Cu,v) (16)
l(v) = (f,v) (17)

Problem 1. Write out the component form of V(V - u) + Au = 0.
Problem 2. Make a variational formulation of the system —Au; = us,

—Auy = f with u; = 0 and uy = 0 on the boundary. Hint: You do not have
to use vector notation.

Finite Element Approximation

Let L = { K} be a mesh of  into shape regular triangles K, and let V;, C V
be the space of all continuous piecewise linear functions on X that vanish on
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the boundary. The finite element approximation of (15) takes the form: find
UcV, =V, xV, such that

a(U,v) =1l(v), YveV, (18)

Derivation of the Discrete System of Equation

Let {¢;}¥, be the usual basis of hat functions for V;. A basis for V;, =
Vi XV}, is given by

() () B L) [ o

Using this the finite element solution U = [U;, Us] can be written either as
2N
U=> & (20)
j=1
using vector notation, or
N N
U= me, U= Gy, (21)
j=1 7=1

using component form.

The finite element method (15) is equivalent to
a(U.0) = I(g), i=1,..2N (22)

Inserting U = 2351 &, into (22) gives

oN oN
bi=1p) =Y &algj @)=Y Ay&, i=1,...2N (23)
j=1

ij=1
where we have introduced the notation

Aij=alej, @), i,j=1,...,2N (24)
b =1(pi), i=1,...,2N (25)



This is just a 2N x 2N linear system
AE=Db (26)

where the entries of the matrix A, and the vector b are defined by (24)
and (25), respectively. The vector & contains the nodal values of the finite
element solution U and takes the form

E=[, .. 68 =, ..o G ) (27)

The ordering of the hat functions in the construction of the basis for V7,
leads to a block structure of the matrix A

K + M) M (c12)
A= M (c21) K + M(e22) (28)
where K and M(© are the N x N stiffness and mass matrix with entries

Kz‘j = (VQOj,V(,Oi), ,7=1,...,N (29)
MY = (epjr00), i j=1,...,N (30)

A similar block structure applies to the vector b, which takes the form

FU)
b= {F(h)} (31)
where
FD = (fp), i=1,...,N (32)

Matlab Implementation

Using the build-in assembly routine assema it is very easy to assemble the
linear system (26) and compute the finite element solution U. We list the
code below.



[p,e,t]=initmesh(geom, *hmax’,0.1);
N=size(p,2);

%» find triangle midpoints

i=t(1,:); j=t(2,:); k=t(3,:);
x=(p(1,1)+p(1,j)+p(1,k))/3;
y=(p(2,1)+p(2,j)+p(2,k))/3;

% evaluate coefficients and assemble
[K,Mc11,Ff1]=assema(p,t,1,cl1(x,y),f1(x,y));
[K,Mc22,Ff2]=assema(p,t,1,c22(x,y),f2(x,y));
[unused,Mc12,unused]=assema(p,t,0,c12(x,y),0);
[unused,Mc21,unused]=assema(p,t,0,c21(x,y),0);
A=[K+Mc11 Mc12; Mc21 K+Mc22];

b=[Ff1l; Ff2]
i solve linear system
xi=A\Db;

% visualize solution
eta=xi(1:N); zeta=xi(N+1l:end);
figure(1), pdesurf(p,t,eta)
figure(2), pdesurf(p,t,zeta)

Here, c11, c12, etc., are subroutines defining the coefficients c¢;1, ¢12 etc. For
example,

function z=c11(x,y)
z=x+1;

Problem 3. Implement the code outlined above and solve the system (1)
with C11 = C12 = 1, Co1 = Co9 = 0, and f1 = sin(acl) and f2 = Sin(fL’Q). Repeat
with Coo — 10 and Co1 — 1.



Extension to Time-Dependent Problems

We next extend the discussion to the time-dependent problem

Uy — Auy + g + craus = f1, ImQx T (33a)
Uy — AUy + Coguy + Cogis = fo, In QX T (33b)
n-Vu; =0, ondQdxI (33c)
n-Vuy =0, ondQx [ (33d)
ui(+,0) =Y, in (33e)
uy(-,0) = ud, in Q (33f)

where the dot superscript means differentiation with respect to time ¢ and
I = (0,77 is the time interval with final time 7. Moreover, u{ and u) denotes
two given initial conditions.

To obtain a numerical method we shall first apply finite elements in space.
This will lead to a system of ordinary differential equations in time, which
we subsequently solve using the Euler backward time stepping scheme.

A space discrete variational formulation of (33) reads: find w € V such that
for every fixed t

(,v) +a(u,v)=1(v), YveV, tel (34)

where a(-,-) and [(-) are defined by (16) and (17), respectively. The corre-
sponding finite element approximation takes the form: find U € V, such
that for every fixed ¢

(U,v)+a(U,v)=I1(v), YwveV,, tel (35)
An ansatz for U is given by

U= Z@(t)eoi (36)

where ¢, are the vector valued hat basis functions of (19). Comparing with
(20) we see that the big difference between the construction of U for time-
dependent and time-independent problems are the coefficients ;. For time-
dependent problems &; = &;(t) are functions of time ¢, whereas they are
constants for time-independent problems.
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Substituting the ansatz into (35) with v = ¢; we get

b; = l(%) (37)
—Z@ (1. 0:) + & (t)alp;, @) (38)
= Z My&i(t) + Ag&;(t), i=1,...,2N (39)

where we have introduced the notation
MlJ:(Soj?‘P])v Z,]:1,72N (40)

This is a system of 2N ordinary differential equations. In matrix form we
write

ME(t) + AE(t) = b (41)

To solve (41) we make a discretization in time. Let
O=thg< - <th<---<tp=T (42)

be a partition of the time interval I into L + 1 discrete time levels ¢,, spaced
At apart. Further, let £€* denote an approximation to &€(t,). Replacing the
time derivative f by the simplest difference quotient we arrive at the Euler
backward method.

Algorithm 1 Euler Backward Method.
1: Given £°.
2: forn=20,...,L do
3:  Solve the linear system

€n+1 sn

M=——
At

+ A" =b (43)

4: end for

The initial vector £€° is almost always taken as the nodal interpolant on V/

of the initial conditions u? and u9, that is, £€° = [mu?, muJ].
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A Predator-Prey Model

We finally consider a classic application of (33) to ecology. Let u; and uy be
the number of rabbits (prey) and foxes (predators) per acre within a forest
Q. A first crude model for the interaction between the two species could be

’[Ll — alAul = C1U1 (ﬂg — UQ) (44&)

ug — CLQAUQ = CgUg(Ul — ﬂl) (44b>

where a;, ¢;, and u;, @ = 1,2, are given constants. Roughly speaking we can
think of u5 as a critical fox density for which the rabbits can reproduce at the
same rate as they are killed. Similarly, @, is a critical rabbit density at which
the rabbits can precisely feed the foxes. The tendency of the species to move,
or spread, to the surroundings are governed by the diffusion parameters a;.

The boundary conditions can be of different types. For example, on the
boundary of a large water reservoir we should have that n - Vu; = 0, since
foxes and rabbits do not like to swim. However, along the boundary to a
highway with heavy traffic, without a fence, and with attractive lands across
the road, we should rather have u; = 0, which means that all animals trying
to pass the highway are killed by the traffic. We assume the former type of
boundary conditions.

Problem 4. Make a variational formulation of the predator-pray problem
(44). Formulate a finite element approximation and write down the resulting
nonlinear discrete system of equations.

Below we list a code to compute the density of rabbits and foxes within a
forest defined by the geometry matrix geom. For simplicity we have set all
coefficients to unity.

[p,e,t]=initmesh(geom) ;

N=size(p,2);
eta =rand(N,1); % initial rabbit population
zeta=rand(N,1); % fox

[K,M,ununsed]=assema(p,t,1,1,0); % assemble K and M
dt=0.01; % time step
time=0;



while time < 1 % time loop
eta_old=eta; =zeta_old=zeta;
for fixpt=1:2 % make two fixed point iterations
eta =(M/dt+K)\ (M/dt* eta_old+M*x(eta.*(1l-zeta)));
zeta=(M/dt+K)\ (M/dt*zeta_old+M* (zeta.*(eta-1)));
end
time=time+dt;
figure(1), pdesurf(p,t,eta)
figure(2), pdesurf(p,t,zeta)
end

Problem 5. Explain how the code M*(zeta.*(eta-1)) occuring above can
be used to approximate the load vector F; = (ug(uy —1),¢;), i =1,..., N.

Problem 6. Simulate the density of rabbits and foxes on the unitsquare
Q = [0, 1)* during the time span 0 < ¢ < 1. Start from a random distribution
of rabbits and foxes. Make plots of your results.
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