Systems of Partial Differential Equations

Computer Lab 3

Introduction

It is very rare that a real life phenomenon can be modeled by a single partial differential equation. Usually it takes a system of coupled partial differential equations to yield a complete model. For example, let us say that we want to compute the distribution of heat with a microwave oven. Then we must first compute the electrical wave E that generate the heat. It is given by the Helmholtz equation $\Delta E+\omega^{2} E=0$, where ω is the frequency of the wave. Second, we must solve the Heat equation $-\Delta T=|E|^{2}$ for the temperature T within the oven. Since T depends on E this is a coupled problem with two partial differential equations. In this computer lab we study finite element approximations of such problems.

Model Problem

We start by considering the model problem of finding u_{1} and u_{2} such that

$$
\begin{align*}
-\Delta u_{1}+c_{11} u_{1}+c_{12} u_{2} & =f_{1}, & & \text { in } \Omega \tag{1a}\\
-\Delta u_{2}+c_{12} u_{2}+c_{22} u_{2} & =f_{2}, & & \text { in } \Omega \tag{1b}\\
n \cdot \nabla u_{1} & =0, & & \text { on } \partial \Omega \tag{1c}\\
n \cdot \nabla u_{2} & =0, & & \text { on } \partial \Omega \tag{1d}
\end{align*}
$$

where $c_{i j}>0, i, j=1,2$, and $f_{i}, i=1,2$, are given coefficients. As usual, $\Omega \subset \mathbb{R}^{2}$ is assumed to be a domain with smooth boundary $\partial \Omega$ and outward unit normal n.

Variational Formulation

Let

$$
\begin{equation*}
V=H^{1}(\Omega)=\{v:\|\nabla v\|+\|v\|<\infty\} \tag{2}
\end{equation*}
$$

Multiplying (1a) by a test function $v_{1} \in V$ and using partial integration we have

$$
\begin{align*}
\left(f_{1}, v_{1}\right) & =\left(-\Delta u_{1}, v_{1}\right)+\left(c_{11} u_{1}+c_{12} u_{2}, v_{1}\right) \tag{3}\\
& =-\left(n \cdot \nabla u_{1}, v_{1}\right) \partial \Omega+\left(\nabla u_{1}, \nabla v_{1}\right)+\left(c_{11} u_{1}+c_{12} u_{2}, v_{1}\right) \tag{4}\\
& =\left(\nabla u_{1}, \nabla v_{1}\right)+\left(c_{11} u_{1}+c_{12} u_{2}, v_{1}\right) \tag{5}
\end{align*}
$$

where the boundary term $\left(n \cdot \nabla u_{1}, v_{1}\right)$ vanish due to the boundary condition. Similarly, multiplying (1b) by another test function $v_{2} \in V$ and integrating by parts yields

$$
\begin{equation*}
\left(f_{2}, v_{2}\right)=\left(\nabla u_{2}, \nabla v_{2}\right)+\left(c_{21} u_{1}+c_{22} u_{2}, v_{2}\right) \tag{6}
\end{equation*}
$$

Adding (5) and (6) give us the variational equation

$$
\begin{align*}
&\left(f_{1}, v_{1}\right)+\left(f_{2}, v_{2}\right)=\left(\nabla u_{1}, \nabla v_{1}\right)+\left(c_{11} u_{1}+c_{12} u_{2}, v_{1}\right) \tag{7}\\
&+\left(\nabla u_{2}, \nabla v_{2}\right)+\left(c_{21} u_{1}+c_{22} u_{2}, v_{2}\right)
\end{align*}
$$

We shall now rewrite this using vector notation. To this end we introduce the vectors

$$
\boldsymbol{u}=\left[\begin{array}{l}
u_{1} \tag{8}\\
u_{2}
\end{array}\right], \quad \boldsymbol{v}=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]
$$

We also need the gradient matrix for these vectors, defined by

$$
\nabla \boldsymbol{v}=\left[\begin{array}{ll}
\partial v_{1} / \partial x_{1} & \partial v_{1} / \partial x_{2} \tag{9}\\
\partial v_{2} / \partial x_{1} & \partial v_{2} / \partial x_{2}
\end{array}\right]
$$

With this definitions we can write

$$
\begin{equation*}
\left(\nabla u_{1}, \nabla v_{1}\right)+\left(\nabla u_{2}, \nabla v_{2}\right)=\sum_{i, j=1}^{2}\left(\partial u_{i} / \partial x_{j}, \partial v_{i} / \partial x_{j}\right) \equiv(\nabla \boldsymbol{u}: \nabla \boldsymbol{v}) \tag{10}
\end{equation*}
$$

where we have introduced the colon operator : between two 2×2 matrices \boldsymbol{A} and \boldsymbol{B}

$$
\begin{equation*}
\boldsymbol{A}: \boldsymbol{B}=\sum_{i, j=1}^{2} a_{i j} b_{i j} \tag{11}
\end{equation*}
$$

Further, collecting the coefficients $c_{i j}$ into a matrix

$$
\boldsymbol{C}=\left[\begin{array}{ll}
c_{11} & c_{12} \tag{12}\\
c_{21} & c_{22}
\end{array}\right]
$$

we can write the terms

$$
\begin{equation*}
\left(c_{11} u_{1}+c_{12} u_{2}, v_{1}\right)+\left(c_{21} u_{1}+c_{22} u_{2}, v_{2}\right)=(\boldsymbol{C u}, \boldsymbol{v}) \tag{13}
\end{equation*}
$$

Finally, we write

$$
\begin{equation*}
\left(f_{1}, v_{1}\right)+\left(f_{2}, v_{2}\right)=(\boldsymbol{f}, \boldsymbol{v}) \tag{14}
\end{equation*}
$$

Using vector notation the variation formulation of (1) reads: find $\boldsymbol{u} \in \boldsymbol{V}=$ $V \times V$ such that

$$
\begin{equation*}
a(\boldsymbol{u}, \boldsymbol{v})=l(\boldsymbol{v}), \quad \forall \boldsymbol{v} \in \boldsymbol{V} \tag{15}
\end{equation*}
$$

where the bilinear form $a(\cdot, \cdot)$ and the linear form $l(\cdot)$ is defined by

$$
\begin{align*}
a(\boldsymbol{u}, \boldsymbol{v}) & =(\nabla \boldsymbol{u}: \nabla \boldsymbol{v})+(\boldsymbol{C u}, \boldsymbol{v}) \tag{16}\\
l(\boldsymbol{v}) & =(\boldsymbol{f}, \boldsymbol{v}) \tag{17}
\end{align*}
$$

Problem 1. Write out the component form of $\nabla(\nabla \cdot \boldsymbol{u})+\Delta \boldsymbol{u}=\mathbf{0}$.
Problem 2. Make a variational formulation of the system $-\Delta u_{1}=u_{2}$, $-\Delta u_{2}=f$ with $u_{1}=0$ and $u_{2}=0$ on the boundary. Hint: You do not have to use vector notation.

Finite Element Approximation

Let $\mathcal{K}=\{K\}$ be a mesh of Ω into shape regular triangles K, and let $V_{h} \subset V$ be the space of all continuous piecewise linear functions on \mathcal{K} that vanish on
the boundary. The finite element approximation of (15) takes the form: find $\boldsymbol{U} \in \boldsymbol{V}_{h}=V_{h} \times V_{h}$ such that

$$
\begin{equation*}
a(\boldsymbol{U}, \boldsymbol{v})=l(\boldsymbol{v}), \quad \forall \boldsymbol{v} \in \boldsymbol{V}_{h} \tag{18}
\end{equation*}
$$

Derivation of the Discrete System of Equation

Let $\left\{\varphi_{i}\right\}_{i=1}^{N}$ be the usual basis of hat functions for V_{h}. A basis for $\boldsymbol{V}_{h}=$ $V_{h} \times V_{h}$ is given by

$$
\left\{\left[\begin{array}{c}
\varphi_{1} \tag{19}\\
0
\end{array}\right],\left[\begin{array}{c}
\varphi_{2} \\
0
\end{array}\right], \ldots,\left[\begin{array}{c}
\varphi_{N} \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
\varphi_{1}
\end{array}\right],\left[\begin{array}{c}
0 \\
\varphi_{2}
\end{array}\right], \ldots,\left[\begin{array}{c}
0 \\
\varphi_{N}
\end{array}\right]\right\}=\left\{\boldsymbol{\varphi}_{i}\right\}_{i=1}^{2 N}
$$

Using this the finite element solution $\boldsymbol{U}=\left[U_{1}, U_{2}\right]$ can be written either as

$$
\begin{equation*}
\boldsymbol{U}=\sum_{j=1}^{2 N} \xi_{j} \boldsymbol{\varphi}_{j} \tag{20}
\end{equation*}
$$

using vector notation, or

$$
\begin{equation*}
U_{1}=\sum_{j=1}^{N} \eta_{j} \varphi_{j}, \quad U_{2}=\sum_{j=1}^{N} \zeta_{j} \varphi_{j} \tag{21}
\end{equation*}
$$

using component form.
The finite element method (15) is equivalent to

$$
\begin{equation*}
a\left(\boldsymbol{U}, \boldsymbol{\varphi}_{i}\right)=l\left(\boldsymbol{\varphi}_{i}\right), \quad i=1, \ldots, 2 N \tag{22}
\end{equation*}
$$

Inserting $\boldsymbol{U}=\sum_{j=1}^{2 N} \xi_{j} \boldsymbol{\varphi}_{j}$ into (22) gives

$$
\begin{equation*}
b_{i}=l\left(\boldsymbol{\varphi}_{i}\right)=\sum_{j=1}^{2 N} \xi_{j} a\left(\boldsymbol{\varphi}_{j}, \boldsymbol{\varphi}_{i}\right)=\sum_{i, j=1}^{2 N} A_{i j} \xi_{j}, \quad i=1, \ldots, 2 N \tag{23}
\end{equation*}
$$

where we have introduced the notation

$$
\begin{align*}
A_{i j} & =a\left(\boldsymbol{\varphi}_{j}, \boldsymbol{\varphi}_{i}\right), \quad i, j=1, \ldots, 2 N \tag{24}\\
b_{i} & =l\left(\boldsymbol{\varphi}_{i}\right), \quad i=1, \ldots, 2 N \tag{25}
\end{align*}
$$

This is just a $2 N \times 2 N$ linear system

$$
\begin{equation*}
A \xi=b \tag{26}
\end{equation*}
$$

where the entries of the matrix \boldsymbol{A}, and the vector \boldsymbol{b} are defined by (24) and (25), respectively. The vector $\boldsymbol{\xi}$ contains the nodal values of the finite element solution \boldsymbol{U} and takes the form

$$
\begin{equation*}
\boldsymbol{\xi}=\left[\xi_{1}, \ldots, \xi_{2 N}\right]^{T}=\left[\eta_{1}, \ldots, \eta_{N}, \zeta_{1}, \ldots, \zeta_{N}\right]^{T} \tag{27}
\end{equation*}
$$

The ordering of the hat functions in the construction of the basis for \boldsymbol{V}_{h} leads to a block structure of the matrix \boldsymbol{A}

$$
\boldsymbol{A}=\left[\begin{array}{cc}
\boldsymbol{K}+\boldsymbol{M}^{\left(c_{11}\right)} & \boldsymbol{M}^{\left(c_{12}\right)} \tag{28}\\
\boldsymbol{M}^{\left(c_{21}\right)} & \boldsymbol{K}+\boldsymbol{M}^{\left(c_{22}\right)}
\end{array}\right]
$$

where \boldsymbol{K} and $\boldsymbol{M}^{(c)}$ are the $N \times N$ stiffness and mass matrix with entries

$$
\begin{align*}
K_{i j} & =\left(\nabla \varphi_{j}, \nabla \varphi_{i}\right), \quad i, j=1, \ldots, N \tag{29}\\
M_{i j}^{(c)} & =\left(c \varphi_{j}, \varphi_{i}\right), \quad i, j=1, \ldots, N \tag{30}
\end{align*}
$$

A similar block structure applies to the vector \boldsymbol{b}, which takes the form

$$
\boldsymbol{b}=\left[\begin{array}{l}
\boldsymbol{F}^{\left(f_{1}\right)} \tag{31}\\
\boldsymbol{F}^{\left(f_{2}\right)}
\end{array}\right]
$$

where

$$
\begin{equation*}
F_{i}^{(f)}=\left(f, \varphi_{i}\right), \quad i=1, \ldots, N \tag{32}
\end{equation*}
$$

Matlab Implementation

Using the build-in assembly routine assema it is very easy to assemble the linear system (26) and compute the finite element solution \boldsymbol{U}. We list the code below.

```
[p,e,t]=initmesh(geom,'hmax',0.1);
N=size(p,2);
% find triangle midpoints
i=t(1,:); j=t(2,:); k=t(3,:);
x=(p(1,i)+p(1,j)+p(1,k))/3;
y=(p(2,i)+p(2,j)+p(2,k))/3;
% evaluate coefficients and assemble
[K,Mc11,Ff1]=assema(p,t,1,c11(x,y),f1(x,y));
[K,Mc22,Ff2]=assema(p,t,1,c22(x,y),f2(x,y));
[unused,Mc12,unused]=assema(p,t,0,c12(x,y),0);
[unused,Mc21,unused]=assema(p,t,0,c21(x,y),0);
A=[K+Mc11 Mc12; Mc21 K+Mc22];
b=[Ff1; Ff2]
% solve linear system
xi=A\b;
% visualize solution
eta=xi(1:N); zeta=xi(N+1:end);
figure(1), pdesurf(p,t,eta)
figure(2), pdesurf(p,t,zeta)
```

Here, $\mathrm{c} 11, \mathrm{c} 12$, etc., are subroutines defining the coefficients c_{11}, c_{12} etc. For example,

```
function z=c11(x,y)
z=x+1;
```

Problem 3. Implement the code outlined above and solve the system (1) with $c_{11}=c_{12}=1, c_{21}=c_{22}=0$, and $f_{1}=\sin \left(x_{1}\right)$ and $f_{2}=\sin \left(x_{2}\right)$. Repeat with $c_{22}=10$ and $c_{21}=1$.

Extension to Time-Dependent Problems

We next extend the discussion to the time-dependent problem

$$
\begin{align*}
\dot{u}_{1}-\Delta u_{1}+c_{11} u_{1}+c_{12} u_{2} & =f_{1}, & & \text { in } \Omega \times I \tag{33a}\\
\dot{u}_{2}-\Delta u_{2}+c_{21} u_{1}+c_{22} u_{2} & =f_{2}, & & \text { in } \Omega \times I \tag{33b}\\
n \cdot \nabla u_{1} & =0, & & \text { on } \partial \Omega \times I \tag{33c}\\
n \cdot \nabla u_{2} & =0, & & \text { on } \partial \Omega \times I \tag{33d}\\
u_{1}(\cdot, 0) & =u_{1}^{0}, & & \text { in } \Omega \tag{33e}\\
u_{2}(\cdot, 0) & =u_{2}^{0}, & & \text { in } \Omega \tag{33f}
\end{align*}
$$

where the dot superscript means differentiation with respect to time t and $I=(0, T]$ is the time interval with final time T. Moreover, u_{1}^{0} and u_{2}^{0} denotes two given initial conditions.

To obtain a numerical method we shall first apply finite elements in space. This will lead to a system of ordinary differential equations in time, which we subsequently solve using the Euler backward time stepping scheme.

A space discrete variational formulation of (33) reads: find $\boldsymbol{u} \in \boldsymbol{V}$ such that for every fixed t

$$
\begin{equation*}
(\dot{\boldsymbol{u}}, \boldsymbol{v})+a(\boldsymbol{u}, \boldsymbol{v})=l(\boldsymbol{v}), \quad \forall \boldsymbol{v} \in \boldsymbol{V}, t \in I \tag{34}
\end{equation*}
$$

where $a(\cdot, \cdot)$ and $l(\cdot)$ are defined by (16) and (17), respectively. The corresponding finite element approximation takes the form: find $\boldsymbol{U} \in \boldsymbol{V}_{h}$ such that for every fixed t

$$
\begin{equation*}
(\dot{\boldsymbol{U}}, \boldsymbol{v})+a(\boldsymbol{U}, \boldsymbol{v})=l(\boldsymbol{v}), \quad \forall \boldsymbol{v} \in \boldsymbol{V}_{h}, t \in I \tag{35}
\end{equation*}
$$

An ansatz for \boldsymbol{U} is given by

$$
\begin{equation*}
\boldsymbol{U}=\sum_{i=1}^{2 N} \xi_{i}(t) \boldsymbol{\varphi}_{i} \tag{36}
\end{equation*}
$$

where $\boldsymbol{\varphi}_{i}$ are the vector valued hat basis functions of (19). Comparing with (20) we see that the big difference between the construction of \boldsymbol{U} for timedependent and time-independent problems are the coefficients ξ_{j}. For timedependent problems $\xi_{j}=\xi_{j}(t)$ are functions of time t, whereas they are constants for time-independent problems.

Substituting the ansatz into (35) with $\boldsymbol{v}=\boldsymbol{\varphi}_{i}$ we get

$$
\begin{align*}
b_{i} & =l\left(\boldsymbol{\varphi}_{i}\right) \tag{37}\\
& =\sum_{j=1}^{2 N} \dot{\xi}_{j}(t)\left(\boldsymbol{\varphi}_{j}, \boldsymbol{\varphi}_{i}\right)+\xi_{j}(t) a\left(\boldsymbol{\varphi}_{j}, \boldsymbol{\varphi}_{i}\right) \tag{38}\\
& =\sum_{i, j=1}^{2 N} M_{i j} \dot{\xi}_{j}(t)+A_{i j} \xi_{j}(t), \quad i=1, \ldots, 2 N \tag{39}
\end{align*}
$$

where we have introduced the notation

$$
\begin{equation*}
M_{i j}=\left(\boldsymbol{\varphi}_{j}, \boldsymbol{\varphi}_{j}\right), \quad i, j=1, \ldots, 2 N \tag{40}
\end{equation*}
$$

This is a system of $2 N$ ordinary differential equations. In matrix form we write

$$
\begin{equation*}
\boldsymbol{M} \dot{\boldsymbol{\xi}}(t)+\boldsymbol{A} \boldsymbol{\xi}(t)=\boldsymbol{b} \tag{41}
\end{equation*}
$$

To solve (41) we make a discretization in time. Let

$$
\begin{equation*}
0=t_{0}<\cdots<t_{n}<\cdots<t_{L}=T \tag{42}
\end{equation*}
$$

be a partition of the time interval I into $L+1$ discrete time levels t_{n} spaced Δt apart. Further, let $\boldsymbol{\xi}^{n}$ denote an approximation to $\boldsymbol{\xi}\left(t_{n}\right)$. Replacing the time derivative $\dot{\boldsymbol{\xi}}$ by the simplest difference quotient we arrive at the Euler backward method.

```
Algorithm 1 Euler Backward Method.
    Given \(\xi^{0}\).
    for \(n=0, \ldots, L\) do
        Solve the linear system
            \(\boldsymbol{M} \frac{\boldsymbol{\xi}^{n+1}-\boldsymbol{\xi}^{n}}{\Delta t}+\boldsymbol{A} \boldsymbol{\xi}^{n+1}=\boldsymbol{b}\)
```

 end for
 The initial vector $\boldsymbol{\xi}^{0}$ is almost always taken as the nodal interpolant on \boldsymbol{V} of the initial conditions u_{1}^{0} and u_{2}^{0}, that is, $\boldsymbol{\xi}^{0}=\left[\pi u_{1}^{0}, \pi u_{2}^{0}\right]$.

A Predator-Prey Model

We finally consider a classic application of (33) to ecology. Let u_{1} and u_{2} be the number of rabbits (prey) and foxes (predators) per acre within a forest Ω. A first crude model for the interaction between the two species could be

$$
\begin{align*}
& \dot{u}_{1}-a_{1} \Delta u_{1}=c_{1} u_{1}\left(\bar{u}_{2}-u_{2}\right) \tag{44a}\\
& \dot{u}_{2}-a_{2} \Delta u_{2}=c_{2} u_{2}\left(u_{1}-\bar{u}_{1}\right) \tag{44b}
\end{align*}
$$

where a_{i}, c_{i}, and $\bar{u}_{i}, i=1,2$, are given constants. Roughly speaking we can think of \bar{u}_{2} as a critical fox density for which the rabbits can reproduce at the same rate as they are killed. Similarly, \bar{u}_{1} is a critical rabbit density at which the rabbits can precisely feed the foxes. The tendency of the species to move, or spread, to the surroundings are governed by the diffusion parameters a_{i}.

The boundary conditions can be of different types. For example, on the boundary of a large water reservoir we should have that $n \cdot \nabla u_{i}=0$, since foxes and rabbits do not like to swim. However, along the boundary to a highway with heavy traffic, without a fence, and with attractive lands across the road, we should rather have $u_{i}=0$, which means that all animals trying to pass the highway are killed by the traffic. We assume the former type of boundary conditions.

Problem 4. Make a variational formulation of the predator-pray problem (44). Formulate a finite element approximation and write down the resulting nonlinear discrete system of equations.

Below we list a code to compute the density of rabbits and foxes within a forest defined by the geometry matrix geom. For simplicity we have set all coefficients to unity.

```
[p,e,t]=initmesh(geom);
N=size(p,2);
eta =rand(N,1); % initial rabbit population
zeta=rand(N,1); % fox
[K,M,ununsed]=assema(p,t,1,1,0); % assemble K and M
dt=0.01; % time step
time=0;
```

```
while time < 1 % time loop
    eta_old=eta; zeta_old=zeta;
    for fixpt=1:2 % make two fixed point iterations
        eta =(M/dt+K)\(M/dt* eta_old+M*(eta.*(1-zeta)));
        zeta=(M/dt+K)\(M/dt*zeta_old+M*(zeta.*(eta-1)));
    end
    time=time+dt;
    figure(1), pdesurf(p,t,eta)
    figure(2), pdesurf(p,t,zeta)
end
```

Problem 5. Explain how the code $\mathrm{M} *$ (zeta.*(eta-1)) occuring above can be used to approximate the load vector $F_{i}=\left(u_{2}\left(u_{1}-1\right), \varphi_{i}\right), i=1, \ldots, N$.

Problem 6. Simulate the density of rabbits and foxes on the unitsquare $\Omega=[0,1]^{2}$ during the time span $0 \leq t \leq 1$. Start from a random distribution of rabbits and foxes. Make plots of your results.

