
Systems of Partial Differential Equations

Computer Lab 3

Introduction

It is very rare that a real life phenomenon can be modeled by a single partial
differential equation. Usually it takes a system of coupled partial differential
equations to yield a complete model. For example, let us say that we want
to compute the distribution of heat with a microwave oven. Then we must
first compute the electrical wave E that generate the heat. It is given by the
Helmholtz equation ∆E + ω2E = 0, where ω is the frequency of the wave.
Second, we must solve the Heat equation −∆T = |E|2 for the temperature
T within the oven. Since T depends on E this is a coupled problem with two
partial differential equations. In this computer lab we study finite element
approximations of such problems.

Model Problem

We start by considering the model problem of finding u1 and u2 such that

−∆u1 + c11u1 + c12u2 = f1, in Ω (1a)

−∆u2 + c12u2 + c22u2 = f2, in Ω (1b)

n · ∇u1 = 0, on ∂Ω (1c)

n · ∇u2 = 0, on ∂Ω (1d)

where cij > 0, i, j = 1, 2, and fi, i = 1, 2, are given coefficients. As usual,
Ω ⊂ R2 is assumed to be a domain with smooth boundary ∂Ω and outward
unit normal n.

1



Variational Formulation

Let

V = H1(Ω) = {v : ‖∇v‖+ ‖v‖ <∞} (2)

Multiplying (1a) by a test function v1 ∈ V and using partial integration we
have

(f1, v1) = (−∆u1, v1) + (c11u1 + c12u2, v1) (3)

= −(n · ∇u1, v1)∂Ω + (∇u1,∇v1) + (c11u1 + c12u2, v1) (4)

= (∇u1,∇v1) + (c11u1 + c12u2, v1) (5)

where the boundary term (n ·∇u1, v1) vanish due to the boundary condition.
Similarly, multiplying (1b) by another test function v2 ∈ V and integrating
by parts yields

(f2, v2) = (∇u2,∇v2) + (c21u1 + c22u2, v2) (6)

Adding (5) and (6) give us the variational equation

(f1, v1) + (f2, v2) = (∇u1,∇v1) + (c11u1 + c12u2, v1) (7)

+ (∇u2,∇v2) + (c21u1 + c22u2, v2)

We shall now rewrite this using vector notation. To this end we introduce
the vectors

u =

[
u1

u2

]
, v =

[
v1

v2

]
(8)

We also need the gradient matrix for these vectors, defined by

∇v =

[
∂v1/∂x1 ∂v1/∂x2

∂v2/∂x1 ∂v2/∂x2

]
(9)

With this definitions we can write

(∇u1,∇v1) + (∇u2,∇v2) =
2∑

i,j=1

(∂ui/∂xj, ∂vi/∂xj) ≡ (∇u : ∇v) (10)

2



where we have introduced the colon operator : between two 2 × 2 matrices
A and B

A : B =
2∑

i,j=1

aijbij (11)

Further, collecting the coefficients cij into a matrix

C =

[
c11 c12

c21 c22

]
(12)

we can write the terms

(c11u1 + c12u2, v1) + (c21u1 + c22u2, v2) = (Cu,v) (13)

Finally, we write

(f1, v1) + (f2, v2) = (f ,v) (14)

Using vector notation the variation formulation of (1) reads: find u ∈ V =
V × V such that

a(u,v) = l(v), ∀v ∈ V (15)

where the bilinear form a(·, ·) and the linear form l(·) is defined by

a(u,v) = (∇u : ∇v) + (Cu,v) (16)

l(v) = (f ,v) (17)

Problem 1. Write out the component form of ∇(∇ · u) + ∆u = 0.

Problem 2. Make a variational formulation of the system −∆u1 = u2,
−∆u2 = f with u1 = 0 and u2 = 0 on the boundary. Hint: You do not have
to use vector notation.

Finite Element Approximation

Let K = {K} be a mesh of Ω into shape regular triangles K, and let Vh ⊂ V
be the space of all continuous piecewise linear functions on K that vanish on

3



the boundary. The finite element approximation of (15) takes the form: find
U ∈ V h = Vh × Vh such that

a(U ,v) = l(v), ∀v ∈ V h (18)

Derivation of the Discrete System of Equation

Let {ϕi}Ni=1 be the usual basis of hat functions for Vh. A basis for V h =
Vh × Vh is given by{[

ϕ1

0

]
,

[
ϕ2

0

]
, . . . ,

[
ϕN

0

]
,

[
0
ϕ1

]
,

[
0
ϕ2

]
, . . . ,

[
0
ϕN

]}
= {ϕi}2N

i=1 (19)

Using this the finite element solution U = [U1, U2] can be written either as

U =
2N∑
j=1

ξjϕj (20)

using vector notation, or

U1 =
N∑
j=1

ηjϕj, U2 =
N∑
j=1

ζjϕj, (21)

using component form.

The finite element method (15) is equivalent to

a(U ,ϕi) = l(ϕi), i = 1, . . . , 2N (22)

Inserting U =
∑2N

j=1 ξjϕj into (22) gives

bi = l(ϕi) =
2N∑
j=1

ξja(ϕj,ϕi) =
2N∑

i,j=1

Aijξj, i = 1, . . . , 2N (23)

where we have introduced the notation

Aij = a(ϕj,ϕi), i, j = 1, . . . , 2N (24)

bi = l(ϕi), i = 1, . . . , 2N (25)

4



This is just a 2N × 2N linear system

Aξ = b (26)

where the entries of the matrix A, and the vector b are defined by (24)
and (25), respectively. The vector ξ contains the nodal values of the finite
element solution U and takes the form

ξ = [ξ1, . . . , ξ2N ]T = [η1, . . . , ηN , ζ1, . . . , ζN ]T (27)

The ordering of the hat functions in the construction of the basis for V h

leads to a block structure of the matrix A

A =

[
K +M (c11) M (c12)

M (c21) K +M (c22)

]
(28)

where K and M (c) are the N ×N stiffness and mass matrix with entries

Kij = (∇ϕj,∇ϕi), i, j = 1, . . . , N (29)

M
(c)
ij = (cϕj, ϕi), i, j = 1, . . . , N (30)

A similar block structure applies to the vector b, which takes the form

b =

[
F (f1)

F (f2)

]
(31)

where

F
(f)
i = (f, ϕi), i = 1, . . . , N (32)

Matlab Implementation

Using the build-in assembly routine assema it is very easy to assemble the
linear system (26) and compute the finite element solution U . We list the
code below.

5



[p,e,t]=initmesh(geom,’hmax’,0.1);

N=size(p,2);

% find triangle midpoints

i=t(1,:); j=t(2,:); k=t(3,:);

x=(p(1,i)+p(1,j)+p(1,k))/3;

y=(p(2,i)+p(2,j)+p(2,k))/3;

% evaluate coefficients and assemble

[K,Mc11,Ff1]=assema(p,t,1,c11(x,y),f1(x,y));

[K,Mc22,Ff2]=assema(p,t,1,c22(x,y),f2(x,y));

[unused,Mc12,unused]=assema(p,t,0,c12(x,y),0);

[unused,Mc21,unused]=assema(p,t,0,c21(x,y),0);

A=[K+Mc11 Mc12; Mc21 K+Mc22];

b=[Ff1; Ff2]

% solve linear system

xi=A\b;

% visualize solution

eta=xi(1:N); zeta=xi(N+1:end);

figure(1), pdesurf(p,t,eta)

figure(2), pdesurf(p,t,zeta)

Here, c11, c12, etc., are subroutines defining the coefficients c11, c12 etc. For
example,

function z=c11(x,y)

z=x+1;

Problem 3. Implement the code outlined above and solve the system (1)
with c11 = c12 = 1, c21 = c22 = 0, and f1 = sin(x1) and f2 = sin(x2). Repeat
with c22 = 10 and c21 = 1.

6



Extension to Time-Dependent Problems

We next extend the discussion to the time-dependent problem

u̇1 −∆u1 + c11u1 + c12u2 = f1, in Ω× I (33a)

u̇2 −∆u2 + c21u1 + c22u2 = f2, in Ω× I (33b)

n · ∇u1 = 0, on ∂Ω× I (33c)

n · ∇u2 = 0, on ∂Ω× I (33d)

u1(·, 0) = u0
1, in Ω (33e)

u2(·, 0) = u0
2, in Ω (33f)

where the dot superscript means differentiation with respect to time t and
I = (0, T ] is the time interval with final time T . Moreover, u0

1 and u0
2 denotes

two given initial conditions.

To obtain a numerical method we shall first apply finite elements in space.
This will lead to a system of ordinary differential equations in time, which
we subsequently solve using the Euler backward time stepping scheme.

A space discrete variational formulation of (33) reads: find u ∈ V such that
for every fixed t

(u̇,v) + a(u,v) = l(v), ∀v ∈ V , t ∈ I (34)

where a(·, ·) and l(·) are defined by (16) and (17), respectively. The corre-
sponding finite element approximation takes the form: find U ∈ V h such
that for every fixed t

(U̇ ,v) + a(U ,v) = l(v), ∀v ∈ V h, t ∈ I (35)

An ansatz for U is given by

U =
2N∑
i=1

ξi(t)ϕi (36)

where ϕi are the vector valued hat basis functions of (19). Comparing with
(20) we see that the big difference between the construction of U for time-
dependent and time-independent problems are the coefficients ξj. For time-
dependent problems ξj = ξj(t) are functions of time t, whereas they are
constants for time-independent problems.

7



Substituting the ansatz into (35) with v = ϕi we get

bi = l(ϕi) (37)

=
2N∑
j=1

ξ̇j(t)(ϕj,ϕi) + ξj(t)a(ϕj,ϕi) (38)

=
2N∑

i,j=1

Mij ξ̇j(t) + Aijξj(t), i = 1, . . . , 2N (39)

where we have introduced the notation

Mij = (ϕj,ϕj), i, j = 1, . . . , 2N (40)

This is a system of 2N ordinary differential equations. In matrix form we
write

Mξ̇(t) +Aξ(t) = b (41)

To solve (41) we make a discretization in time. Let

0 = t0 < · · · < tn < · · · < tL = T (42)

be a partition of the time interval I into L+ 1 discrete time levels tn spaced
∆t apart. Further, let ξn denote an approximation to ξ(tn). Replacing the
time derivative ξ̇ by the simplest difference quotient we arrive at the Euler
backward method.

Algorithm 1 Euler Backward Method.

1: Given ξ0.
2: for n = 0, . . . , L do
3: Solve the linear system

M
ξn+1 − ξn

∆t
+Aξn+1 = b (43)

4: end for

The initial vector ξ0 is almost always taken as the nodal interpolant on V
of the initial conditions u0

1 and u0
2, that is, ξ0 = [πu0

1, πu
0
2].

8



A Predator-Prey Model

We finally consider a classic application of (33) to ecology. Let u1 and u2 be
the number of rabbits (prey) and foxes (predators) per acre within a forest
Ω. A first crude model for the interaction between the two species could be

u̇1 − a1∆u1 = c1u1(ū2 − u2) (44a)

u̇2 − a2∆u2 = c2u2(u1 − ū1) (44b)

where ai, ci, and ūi, i = 1, 2, are given constants. Roughly speaking we can
think of ū2 as a critical fox density for which the rabbits can reproduce at the
same rate as they are killed. Similarly, ū1 is a critical rabbit density at which
the rabbits can precisely feed the foxes. The tendency of the species to move,
or spread, to the surroundings are governed by the diffusion parameters ai.

The boundary conditions can be of different types. For example, on the
boundary of a large water reservoir we should have that n · ∇ui = 0, since
foxes and rabbits do not like to swim. However, along the boundary to a
highway with heavy traffic, without a fence, and with attractive lands across
the road, we should rather have ui = 0, which means that all animals trying
to pass the highway are killed by the traffic. We assume the former type of
boundary conditions.

Problem 4. Make a variational formulation of the predator-pray problem
(44). Formulate a finite element approximation and write down the resulting
nonlinear discrete system of equations.

Below we list a code to compute the density of rabbits and foxes within a
forest defined by the geometry matrix geom. For simplicity we have set all
coefficients to unity.

[p,e,t]=initmesh(geom);

N=size(p,2);

eta =rand(N,1); % initial rabbit population

zeta=rand(N,1); % fox

[K,M,ununsed]=assema(p,t,1,1,0); % assemble K and M

dt=0.01; % time step

time=0;

9



while time < 1 % time loop

eta_old=eta; zeta_old=zeta;

for fixpt=1:2 % make two fixed point iterations

eta =(M/dt+K)\(M/dt* eta_old+M*(eta.*(1-zeta)));

zeta=(M/dt+K)\(M/dt*zeta_old+M*(zeta.*(eta-1)));

end

time=time+dt;

figure(1), pdesurf(p,t,eta)

figure(2), pdesurf(p,t,zeta)

end

Problem 5. Explain how the code M*(zeta.*(eta-1)) occuring above can
be used to approximate the load vector Fi = (u2(u1 − 1), ϕi), i = 1, . . . , N .

Problem 6. Simulate the density of rabbits and foxes on the unitsquare
Ω = [0, 1]2 during the time span 0 ≤ t ≤ 1. Start from a random distribution
of rabbits and foxes. Make plots of your results.

10


