Note: a minus sign in front of the A is missing on the exam.

(a) Multiplying the PDE by a test-function v which vanishes at the boundary and integrating by parts, we get $(Au, v) + (b \cdot \nabla u, v) + (cu, v) = (f, v)$. Define $V = H^1_0(\Omega)$, the variational formulation reads: find $u \in V$ such that

$$a(u, v) := (Au, v) + (b \cdot \nabla u, v) + (cu, v) = (f, v) := \ell(v), \quad \forall v \in V.$$

For the Galerkin approximation we consider a subspace $V_h \subset V$, find $u_h \in V_h$ such that

$$a(u_h, v) = \ell(v), \quad \forall v \in V_h.$$

(b) The assumptions are $(Au, u) \geq a_0(\nabla u, \nabla u)$, $c - \frac{1}{2} \nabla \cdot b > c_0 > 0$, and $f \in L^2(\Omega)$. Note also that

$$0 = (u \cdot (u^2), 1)_{\partial \Omega} = (\nabla \cdot (bu^2), 1)_{\Omega} = ((\nabla \cdot b)u, u)_{\Omega} + 2(b \cdot \nabla u, u)_{\Omega}. \quad (1)$$

We get

$$a(u, v) = (Au, v) + (b \cdot \nabla u, v) + (cu, v) \geq a_0(\nabla u, \nabla u) + (cu, v) - \frac{1}{2}((\nabla \cdot b)u, u) \geq a_0(\nabla u, \nabla u) + c_0(u, u) = a_0 \|\nabla u\|^2 + c_0 \|u\|^2 \geq \min(a_0, c_0) \|u\|^2 = m \|u\|^2, \quad (2)$$

for coercivity,

$$a(u, v) = (Au, v) + (b \cdot \nabla u, v) + (cu, v) \leq \|A\|_{L^\infty(\Omega)} \|\nabla u\| \|v\| + \|b\|_{L^\infty(\Omega)} \|\nabla u\| \|v\| + \|c\|_{L^\infty(\Omega)} \|u\| \|v\| \leq C_{ab} \|\nabla u\| \|v\| + C_c \|u\| \|v\| \leq C \|u\| \|v\|, \quad (3)$$

for continuity, and

$$\ell(v) = (f, v) = \|f\| \|v\| \leq \|f\| \|v\|, \quad (4)$$

which together show that the Lax-Milgram lemma can be applied.

(c) We have the basic Galerkin orthogonality

$$a(u - u_h, v) = 0, \quad \forall v \in V_h. \quad (5)$$

We start by proving Cea’s lemma and then use the interpolation estimate

$$\|u - u_h\|_V^2 \leq \frac{1}{m} a(u - u_h, u - u_h) = \frac{C_a}{m} a(u - u_h, u - v) \leq \frac{C_a}{m} \|u - u_h\|_V \|u - v\|_V. \quad (6)$$

We obtain for a Poincaré constant C_p,

$$\|u - u_h\|_V \leq \frac{C_a}{m} \|u - v\|_V \leq \frac{C_a C_p}{m} \|\nabla (u - \pi u)\| \leq \frac{C_a C_p C_{\pi}}{m} h_{\min(2,p)} |u|_{H^3(\Omega)}. \quad (7)$$
(d) First is to show that the solution the the variational problem minimize the functional $F(v) = \frac{1}{2}a(v, v) - \ell(v)$. We obtain

$$F(u + v) = \frac{1}{2}a(u + v, u + v) - F(u + v)$$

$$= \frac{1}{2}(a(u, u) + 2a(u, v) + a(v, v)) - \ell(u) - \ell(v)$$

$$= F(u) + a(u, v) - \ell(u) + \frac{1}{2}a(v, v)$$

$$\geq F(u).$$

Then we must show that a minimizer to $F(v)$ solves the variational problem. Let $g(\epsilon) = F(u + \epsilon v)$, we obtain

$$g(\epsilon) = \frac{1}{2}a(u + \epsilon v, u + \epsilon v) - \ell(u + \epsilon v).$$

Differentiating g with respect the ϵ, we have

$$g'(\epsilon) = a(u, v) - \epsilon a(v, v) - \ell(v)$$

and setting $\epsilon = 0$ we have the variational formulation. Note that $V_h \subset V$, we can concludes the proof.

Question 2

(a) We have the system

$$e_1 = \begin{pmatrix} L_1(1) & L_1(r) & L_1(s) & L_1(t) & L_1(rst) \\ L_2(1) & L_2(r) & L_2(s) & L_2(t) & L_2(rst) \\ L_3(1) & L_3(r) & L_3(s) & L_3(t) & L_3(rst) \\ L_4(1) & L_4(r) & L_4(s) & L_4(t) & L_4(rst) \\ L_5(1) & L_5(r) & L_5(s) & L_5(t) & L_5(rst) \\ L_6(1) & L_6(r) & L_6(s) & L_6(t) & L_6(rst) \\ L_7(1) & L_7(r) & L_7(s) & L_7(t) & L_7(rst) \\ L_8(1) & L_8(r) & L_8(s) & L_8(t) & L_8(rst) \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_5 \\ c_6 \\ c_7 \\ c_8 \end{pmatrix}$$

Which is

$$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_5 \\ c_6 \\ c_7 \\ c_8 \end{pmatrix}$$

(11)

(b) We have

$$\|u - u_h\|_h \leq \|u - v\|_h + \|v - u_h\|_h$$

for $v \in V_h$. For the first term choose v as $\sup_{v \in V_h} \|u - v\|_h$. For the second term we have

$$\|v - u_h\|_h^2 \leq \frac{1}{m}a_h(v - u_h, v - u_h) = \frac{1}{m}a_h(v - u + u - u_h, v - u_h)$$

$$= \frac{1}{m} (a_h(v - u, v - u_h) + a_h(u - u_h, v - u_h))$$

$$= \frac{1}{m} (C_{\alpha} \|v - u\|_h \|v - u_h\|_h + a_h(u, v - u_h) - \ell(v - u_h))$$

(14)
which implies that
\[
\|v - u_h\|_h \leq \frac{1}{m} \left(C_\alpha \|v - u\|_h + \frac{a_h(u, v - u_h) - \ell(v - u_h)}{\|v - u_h\|_h} \right)
\]
\[
\leq \frac{1}{m} \left(C_\alpha \|v - u\|_h + \sup_{w \in V_h} \frac{|a_h(u, w) - \ell(w)|}{\|w\|_h} \right)
\]
(15)

Added the bound for the first and second term we have
\[
\|u - u_h\|_h \leq (1 + \frac{C_\alpha}{m}) \inf_{v \in V_h} \|u - v\|_h + \frac{1}{m} \sup_{w \in V_h} \frac{|a_h(u, w) - \ell(w)|}{\|w\|_h}
\]
\[
\leq C \left(\inf_{v \in V_h} \|u - v\|_h + \sup_{w \in V_h} \frac{|a_h(u, w) - \ell(w)|}{\|w\|_h} \right)
\]
(16)

for $C = 1 + \frac{C_\alpha}{m}$.

Question 3

(a) Let’s try to bound the gradient of the solution in terms of data. We have the variational form: find $u \in V = H^1_0(\Omega)$
\[
\epsilon(\nabla u, \nabla v) + (b \cdot \nabla u, v) = (f, v) \quad \forall v \in V.
\]
(17)

We obtain
\[
\epsilon \|\nabla u\|^2 = \epsilon(\nabla u, \nabla u) + (b \cdot \nabla u, u) = (f, v) \leq \|f\| \|v\| \leq C_{P-\ell} \|f\| \|\nabla v\|.
\]
(18)

where we used that
\[
0 = (n \cdot bu^2, 1)_{\partial \Omega} = (\nabla \cdot (bu^2), 1)_{\Omega} = ((\nabla \cdot b)u, u)_{\Omega} + 2(b \cdot \nabla u, u)_{\Omega}.
\]
(19)

together with $\nabla \cdot b = 0$.

(b) First from the continuous problem we have that u solves: find $u \in V = H^1_0(\Omega)$ such that
\[
\epsilon(\nabla u, \nabla v) + (b \cdot \nabla u, v) = (f, v) \quad \forall v \in V.
\]
(20)

For the remaining part we have,
\[
\sum_{T \in \mathcal{T}} (-\epsilon \Delta u + b \cdot \nabla u, -\epsilon \Delta v + b \cdot \nabla v) = \sum_{T \in \mathcal{T}} (f, -\epsilon \Delta v + b \cdot \nabla v).
\]
(21)

Also since, $u \in H^2(\Omega) \cap V$, we have that $-\epsilon \Delta : H^2(\Omega) \to L^2(\Omega)$, but $-\epsilon \Delta |_T : H^1(T) \not\to L^2(T)$ is not true in general, so we can not test for all $v \in V$. The elementwise operator $-\epsilon \Delta |_T : V_h \to L^2(T)$ is true since all $v \in V_h$ are polynomials of finite dimension. Multiplying the original equation with a test function in $w \in L^2(\Omega)$ defined as $w_T = -\epsilon \Delta v + b \cdot \nabla v \in L^2(T)$ on element T, we have that
\[
(\epsilon \Delta u, w) + (b \cdot \nabla u, w) = (f, w)
\]
\[
\Leftrightarrow \sum_{T \in \mathcal{T}} (-\epsilon \Delta u + b \cdot \nabla u, w) = \sum_{T \in \mathcal{T}} (f, w),
\]
(22)

for all $v \in V_h$. Using the first and second part together we obtain that that $u \in H^2 \cap V$ satisfies
\[
a_h(u, v) = \ell(v) \quad \forall v \in V_h.
\]
(23)
Question 4

(a) A typical Picard iteration for the problem is
\[-\nabla \cdot (c(u_k)\nabla u_{k+1}) = f. \]

With \(u_k \) as given we find by linearity that
\[-\nabla \cdot (c(u_k)\nabla (u_k - u_{k+1})) = r_k, \]
with homogeneous Dirichlet boundary conditions.

(b) The suggested iteration is clearly consistent since it is satisfied identically by any solution \(u \) to the PDE itself. Using the boundary conditions we readily find the variational formulation find \(u_{k+1} \in H^1_0(\Omega) \) such that
\[(\nabla v, a(u_k)\nabla u_{k+1}) = (v, f) + (\nabla v, b(u_k)\nabla u_k) \]
for all \(v \in H^1_0(\Omega) \). This implies the FEM
\[
\begin{align*}
A_k\xi_{k+1} &= b + B_k\xi_k, \\
A_k(i, j) &= (\nabla \varphi_i, a(U_k)\nabla \varphi_j), \\
B_k(i, j) &= (\nabla \varphi_i, b(U_k)\nabla \varphi_j), \\
b_i &= (\varphi_i, f), \\
U_k &= \sum_j \xi_k \varphi_j.
\end{align*}
\]

(c) By taking \(v = u_{k+1} \) in the variational formulation we produce the energy estimate
\[
a\|\nabla u_{k+1}\|^2 \leq (\nabla u_{k+1}, a(u_k)\nabla u_{k+1}) = (u_{k+1}, f) + (\nabla u_{k+1}, b(u_k)\nabla u_k) \\
\leq \|u_{k+1}\|\|f\| + \beta\|\nabla u_{k+1}\|\|\nabla u_k\| \leq C\|f\|\|\nabla u_{k+1}\| + \beta\|\nabla u_{k+1}\|\|\nabla u_k\|.
\]

Hence a suitable \(a \) priori bound is
\[
\|\nabla u_{k+1}\| \leq \alpha^{-1}C\|f\| + \alpha^{-1}\beta\|\nabla u_k\|,
\]
which if \(\kappa := \alpha^{-1}\beta < 1 \) can be iterated to give
\[
\begin{align*}
&\leq \alpha^{-1}C\|f\| + \kappa\alpha^{-1}C\|f\| + \kappa^2\|\nabla u_{k-1}\| \leq \ldots \\
&\leq (1 + \kappa + \ldots + \kappa^k)\alpha^{-1}C\|f\| + \kappa^{k+1}\|\nabla u_0\| \\
&\leq \frac{\alpha^{-1}C\|f\|}{1 - \kappa} + \|\nabla u_0\|.
\end{align*}
\]

(d) Here we show that the LM lemma is applicable, but the problem is symmetric so the RR theorem is also applicable. We have
\[
|l(v)| = |(v, f) + (\nabla v, b(u_k)\nabla u_k)| \leq \max(|f|, \beta\|\nabla u_k\|)\|v\|_{H^1(\Omega)},
\]
\[
|a(u, v)| = |(\nabla v, a(u_k)\nabla u)| \leq A_k\|\nabla v\|\|\nabla u\| \leq A_k\|v\|_{H^1(\Omega)}\|u\|_{H^1(\Omega)},
\]
where \(a(u_k) \leq A_k \) (recall that \(a \) is bounded). Finally,
\[
\begin{align*}
a(u, u) &\geq a\|\nabla u\|^2 \geq \frac{\alpha}{C^2}\|u\|^2, \\
\Rightarrow a(u, u) &\geq \frac{\alpha}{2} \min(1, 1/C^2)\|u\|^2_{H^1(\Omega)}.
\end{align*}
\]
We arrive at the Newton method by linearising around the previous iterate u_k. Put $u_{k+1} = u_k + \delta$. Then this is achieved by $a(u_{k+1}) \nabla u_{k+1} = a(u_k + \delta) \nabla (u_k + \delta) = a(u_k) \nabla (u_k + \delta) + \delta a'(u_k) \nabla (u_k) + O(\delta^2)$. The variational formulation becomes find $u_{k+1} \in H^1_0(\Omega)$ such that

$$(\nabla v, a(u_k) \nabla u_{k+1}) + (\nabla v, u_{k+1} a'(u_k) \nabla u_k) = (v, f) + (\nabla v, b(u_k) \nabla u_k) + (\nabla v, u_k a'(u_k) \nabla u_k)$$

for all $v \in H^1_0(\Omega)$. The FEM becomes

$$(A_k + C_k) \xi^{k+1} = b + (B_k + C_k) \xi^k,$$

with matrices A and B as before and with

$$C_k(i, j) = (\nabla \varphi_i, \varphi_j a'(U_k) \nabla U_k).$$