Linear Elasticity

Project 1

This project is closely related to Chapter 11 in The finite element method:
theory, implementation, and applications by Larson and Bengzon. Read
Chapter 11 carefully and take advantage of the analysis and implementa-
tion done there.

The linear elastic problem for static equilibrium of a homogeneous isotropic
body © C R? under the assumption of small deformations and strains reads:
find the symmetric stress tensor o = [0;;]7 and the displacement vector
u = [u;]?, such that

—V.o=Ff, in Q (1a)
o=2ue(u)+ AV -u)I, in{ (1b)

u =0, onT'p (1c)
oc-n=g, on 'y (1d)

Here, f is a given body force, and g a given traction load acting along a
segment [y of the boundary, which has outward unit normal n. Along the
rest of the boundary I'p the body is clamped and can not be displaced. The
elastic properties of the body are governed by the positive constants A and
1 called the Lamé parameters. We imagine {2 to be the cross section of a
long slender structure aligned along the zs-axis. For such structures a state
of plane strain is applicable, which essentially means that all loads and are
confined to the zizo-plane and that no quantities depend on z3. Further,
e(u) = [g4]] is the strain tensor with components

gij(u) = 5 (89{;j + 8:62-) , L,y =1,2 (2)




The divergence of the 2 x 2 tensor o and the 2 x 1 vector w is defined by

v. 0__[ aO'zJ] 7 V- -u=
Ox;

Finally, I is the 2 x 2 identity matrix.

Problem 1. Derive the variational formulation of (1). Present the result on
the form: find uw € ¥V = {v € [H(Q)]? : v|r,= 0}, such that

a(u,v) =1(v), YveV (4)
and define a(-,-) and I(-).

Problem 2. Verify that the conditions for the Lax-Milgram lemma are
satisfied for the variational equation (4). For simplicity, you only have to
consider the case of homogeneous Dirichlet boundary conditions u = 0 on
the whole boundary 0. Hint: Korn’s inequality is useful.

Problem 3. Derive the finite element approximation to equation (4) by
introducing a discrete space of continuous piecewise linear vector polynomials
on a triangulation K. Find a basis for the discrete space using the usual hat
functions.

Problem 4. Implement the finite element method in Matlab. You can use
the following m-files as a starting point.

function Ke = stiffness(x,y,mu,lambda)
area=polyarea(x,y); % x and y are 3 x 1 and hold node coordinates
b=[y(2)-y(3); y3)-y(1); y(L-y(@D];
c=[x(3)-x(2); x(1)-x(3); x(2)-x(1)];
D=mux*[2 0 0; 0 2 0; 0 O 1] + lambdax[1 1 0; 1 1 0; O O 0];
Be=[b(1) 0 b(2) 0 b(3) 0 ;

0 c(1) 0 c(2) 0 c(3);

c(1) b(1) c(2) b(2) c(3) b(3)1/2/area;

Ke=Be’*D*Be*area;

function Fe = load(x,y)



area=polyarea(x,y);
f=force(mean(x) ,mean(y));
Fe=(f(1)*[1 0 1 0 1 0]’+f(2)*[0 1 0 1 0 1]’)*area/3;

function [K,F] = assemble(p,e,t)
ndof=2*size(p,2);
K=sparse(ndof ,ndof) ;
F=zeros(ndof,1);
dofs=zeros(6,1);
E=1; nu=0.3;
lambda=E*nu/((1+nu) *(1-2*nu)); mu=E/(2x(1+nu));
for i=1:size(t,2)
nodes=t(1:3,1);
x=p(1,nodes); y=p(2,nodes);
dofs(1:2:end)=2*nodes-1; dofs(2:2:end)=2*nodes;
Ke=stiffness(x,y,mu,lambda);
Fe=load(x,y);
K(dofs,dofs)=K(dofs,dofs)+Ke;
F(dofs)=F(dofs)+Fe;
end

Problem 5. Now let 2 = [0,1]? with clamped boundary. Assume F = 1,
v = 0.3, and body force

(A +p)(1 = 22)(1 — 2y)

F= 1oyt —y) — 200+ 21 — o)

The analytical solution is given by w = [0, —z(1 — z)y(1 — y)]. Plot the
displacement components. Validate your code by computing the energy norm
a(up, up). It should converge to (A + 3u)/90.

Problem 6. Now try different data sets and evaluate your solver by com-
paring the solution to the Linear Elasticity solver in COMSOL Multiphysics.
Very boundary data, load forcing, and parameters.

Problem 7. Modal analysis is a crucial part of linear elasticity. Let K be the
stiffness matrix as derived in Problem 3 and let M be the mass matrix, see



MGL Chapter 11 pp 269-270. Implement and solve the generalized eigenvalue
problem,

K¢=uw'M, ()

for the eigenvectors ¢ and eigenvalues A = w?. The Matlab function eigs
can be used to compute the lowest eigenvalues (which are the crucial ones).

Problem 8. A mesh of the famous L-shaped domain is obtained by typing
[p,e,t]l=initmesh(’1lshapeg’). Compute and plot the ten lowest eigen-
modes on this domain. Assume elastic constants p =1, E =1, and v = 0.3.
Evaluate your result using COMSOL Multiphysics.

Problem 9. Construct a problem of your own which demonstrates how
modal analysis is critical in structural mechanics. Use COMSOL Multi-
physics and study dynamic linear elasticity with a carefully chosen forcing
function.

Problem 10. Feel free to further investigate your own code and/or COM-
SOL Multiphysics doing more experiments and investigations.



