Solutions to exercises from Chapters 7-10 in MGL.
Axel Malqvist 2013-01-08
(email axel.malqvist@it.uu.se if you find mistakes)

Exercise 7.1 Calculate ), _, D*u.
a, _ xd d
Sol. > o D u=27, > i aii%u'

r, O<z<l
1, 1<x<2”
Sol. Using integration by parts and that ¢(0) = ¢(2) = 0 we get,

—/O2g-g0’(:c)dx:—/le-np'(:z:)da:—/12g0’(:c)d:c

:/0 p(x)dr —1- p(1) — o(2) + p(1)

Exercise 7.2 Calculate the weak derivative of g(x) =

= [ Dustrptoas

1, 0<x<l1

where the weak derivative D, g(z) = { 0 lez<?"

Exercise 7.3 Write down the inner product and norm of H%((2).
Sol. We have,

N )
(u, U)HQ(Q) = (u, ’U)L2(Q) + Z (_ua —U)

d d
o 0 o 0 )
+ Uy, =— 7V s
Z — (8.’13'1 81’]- (91‘2 3:15]- L2(9)

=1 j

1/2
and [[v]|r2(0) = (0, 0) i q-

Exercise 7.4 Does L?(Q) C Hy(Q)? Does H*(Q) C H}(Q)?

1, onwC®
0. on Q\w
is in L*(Q2) but not in H} (). Also the second question has negative answer
since functions in H*(€2) do not in general have zero trace.

Sol. No. A counter example is a function f(x) = which
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Exercise 7.5 Let v(z) = log(log(|z|™")) on a disc  with radius e~!. Verify
that v € H'(Q). Is v € C(Q)?
Sol. We use polar coordinates to get,

rdr -1

1/e
||VU||%2(Q) = 27T\/O' W = {’I" = €y} = 277'/ y_2 dy = 2.

o0

Furthermore, v|gg = 0 i.e. v € HY(Q) C H'(Q). However, v & C(£2) since it
is unbounded on a compact domain.

Exercise 7.6 Consider C'(/) with the supremum norm, where I = [0, 1].
Let f(z) =1 and g(z) = x. Does the parallelogram law hold for f and g7 Is
C(I) an inner product space?

Sol. No since, || f+g|l Locn + 1| f —gll Lo = 3 and 2[| f[|7 () +2[19[| Foe ) = 4
It is not an inner product space.

Exercise 7.7 Show that ||ully < m™'C).
Sol. We have |[ul|} < m™a(u,u) =m (u) < m™1Clullv.

Exercise 7.8 Show that [|v[|g1(q) and |[v|giq) = [[VV||L2(0) are equivalent
norms on Hg ().

Sol. We directly get |v|g1q) < [|vllmi (). Using the Poincare inequality we
also have,

”UHJQLF(Q) = HUH%Q(Q) + HVUH%Q(Q) <(C+ 1)||VU||%2(Q) =(C+ 1)|U|12L15(Q),

which proves the equivalence.

Exercise 7.9 Compute m,C,,C; for the problem —Au = zy?> on Q =
[—1,2] x [0, 3] with homogeneous Dirichlet boundary conditions.

Sol. We have a(u,v) = (Vu, Vo) for all u,v € H}(Q2), i.e. m = C, = 1 since

a(u,v) < | Vullp2e) [ Vollz2) and [[Vo[|7zq) < a(v,v) for all u,v € Hg(9).
Furthermore, use integration by parts w.r.t. x to get,

I(v) :/:vyzvd:vdy: _/y%;, dedy < |19l IV 0ll 2o,
Q Q

We note that C; = 27 - 57 %/2 but possibly less.



Exercise 7.10. Let A be a real n X n matrix which is coercive with re-
spect to the Euclidean norm. Further let b be a real n vector. What can be
said about the eigenvalues of A? Show that Au = b has a unique solution.
Sol.

Let (u,A) be an eigenpair solving Au = Au, normalized so that u - = 1.
Since A is real we note that Au = A\, i.e. complex conjugate eigenvalues and
eigenvectors. In particular this means that u+u,i(u — ) € R™. We now use
that A is coercive on R", i.e. v- Av > cv - v for all v € R”, in the following
calculation,

de =4cu-u
=cu+a) (u+ua)—clu—u) (u—au)
=clu+a) (ut+a)+ci(u—a)-i(u—u)
<(u+a) Alu+u)+i(u—1u)- Ai(u —a)
=(w+u) Alu+a)—(u—a)-Alu—1u)
=2u- Au+2u - Au
=2A+ Nu-u
=2(A+ ).

We conclude that R(\) > c¢. Since zero is not an eigenvalue, A is invertible
and there exists a unique solution to the linear system.

Exercise 7.11 Verify the trace inequality for v = x on Q = [0, L] x [0, L].
How does the constant depend on L7
Sol. We start with the left hand side ||v]|12a0) = 5/2371/2L32. For the right

hand side we have ||v||1L/22(Q) = 37Y4L and ||Vv||2/22(9) = L'2. We conclude

that there is a constant C, independent of L, for which the trace inequality
is fulfilled.

Exercise 7.12 Consider —V - (aVu) = 1 on the unit square with homo-
geneous Dirichlet boundary conditions. Let a be the 2 x 2 matrix with
entries [4,1;1,2]. Decide if the requirements for the Lax-Milgram Lemma is
fulfilled.

Sol. The bilinear form is b(v,w) = (aVv, Vw). The eigenvalues of a are 1 <
A1 < A < 5. Tt is clear that || V|72, < b(v,v) for all v € Hy(9) i.e. the
bilinear form is coercive. It is also clear that b(v, w) < As|| Vvl r20) || VW 20
i.e. the bilinear form is continuous. Let [(v) = [;,1-vdx < |Q[Y?||v]|12() <
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C||Vvl|12() for all v € Hy(£), using the Poincare inequality. The assump-
tions of the Lax-Milgram Lemma are therefore fulfilled.

Exercise 8.1 Work out the formula for the cubic Lagrange shape functions
on the reference triangle.

Sol. Let ¢y =1—1r —s, o3 =7, and p3 = s be the linear shape functions
using the coordinates of Figure 8.2. We get,

S1=1(3p1 — 1)(3p1 — 2)/2,
Sy = pa(3p2 — 1) (32 — 2) /2,
Sz = p3(3ps — 1)(3p3 — 2)/2,
Sy = 9pap3(3p2 — 1)/2,

S5 = 9paip3

5'10 = 27901S02903.

Exercise 8.2 Calculate the entries of the 4 x 4 element stiffness matrix
using bilinear shape functions on K = [0, h] x [0, A].

Sol. Let h = 1 and K = [0,1] x [0,1]. We have four basis functions
p1 =1 -2z)(1-y), po =2(1 —y), 3 = zy, and oy, = (1 — x)y. The

gradients of the basis functions are Vg, = [ g:i ], Vi, = [ 1—_a:y ],

Vs = [ z }, and Vi, = [ 1_—y:v } Due to symmetry we only need to

compute three distinct integrals namely fK Vi - Vorde = 2/3, fK Vi -
Vodr = [ Vi - Vogdr = —1/6, and [ Vi - Vpgdr = —1/3. We get,

4 -1 -2 -1
1| -1 4 -1 -2
61 -2 -1 4 -1

1 -2 —1 4



Scaling with h does not effect the element stiffness matrix since the area and
the scaling of the gradients match exactly.

Exercise 8.3 Show that the bilinear element is not unisolvent if the four
nodes are placed on x; = (—1,0), o = (0,—1), 23 = (1,0), and x4 = (0,1)
on the reference square [—1,1] x [—1, 1].

Sol. The polynomial function space P = span({1l,z,y,zy}). We want to
show that there is an v # 0 such that v(z;) =0 for i = 1,...,4. We imme-
diately see that v = xy fulfills this requirement.

Exercise 8.5 Draw the shape functions for the Crouzeix-Raviart element
on the reference triangle.

Sol. The shape functions on the reference triangle with corners (0, 0), (0, 1),
and (1,0) are S =2x 42y —1, S =1 —2z, and S3 =1 — 2y.

Exercise 8.6 Calculate the Crouzeix-Raviart interpolant of f = 2zy + 4
on the reference triangle.

Sol. Let the basis functions be ¢; = 2x+2y—1, 1y = 1—2x, and ¥3 = 1—2y.
Note that these functions are one in one edge midpoint and zero in the
other two. We get morf = f(1/2,1/2)¢1 + f(0,1/2)¢ + f(1/2,0)1p3 =
92 +9y —9/24+4—-8r+4—-8y=x+y+7/2

Exercise 8.7 Show that V x SNP = 2|E;|Vy; x V.

Sol. We note that V x Vv = 0 for all v € C? and use the product rule
to get, V x (|Ei|(¢;Ver — 0xVe;)) = [Eil(Ve; x Vo — Vi X Vo) =
2|Ei|Vp; x V.

Exercise 8.8 How does the iso-parametric map look in three dimensions?
Sol. Let K be the reference tetrahedron with corners in (0,0,0), (1,0,0),

(0,1,0), and (0,0,1). Let K be an element defined by the nodes N; =

(mgi),xéi),:cg)), i = 1,...,n and the associated shape functions S; through



the following map:

1(r, s,t) le (8, 1),
o(1, s, 1) ZxQ (7, 8,1),
3(r, s, t) ng (7,8, 1),

forall 7, s,t € K.

Exercise 9.1 Show that Newton’s method converges in a single iteration
for a linear problem Ax = b.

Sol. Let g(x) = Az —b. We note that the Jacobian Dg = A. We get
rt =2% — A7 (Ax® — b) = A7 = z, independent of z°.

Exercise 9.2 Derive Newton’s method for the following non-linear prob-
lems: —Au = u —u?, —Au + sin(u) = 1, =V - (1 + v?)Vu) = 1, and
—Au = f(u), where f ( ) is a differentiable function.

Sol. Let V' be an appropriate function space for the problem.
(a) Let u*™! = u¥ + du, where du € V is given as the solution to,

(Vou, Vo) + ((3(u*)? = 1)du,v) = (u* — (uF)?,v) — (Vu*, Vo), Yo eV.

(b) Let w1 = u* + §u, where du € V is given as the solution to,

(Véu, Vo) + (cos(uF)du,v) = —(sin(u¥),v) — (Vu*, Vo), Yo eV.

(c) Let w1 = u* + §u, where du € V is given as the solution to,

(1+ (uM)HVou, Vo) + (2u*Vurdu, Vo) = —((1 + (u")H)Vu*, Vo), Yo e V.

(d) Let w1 = u* + §u, where du € V is given as the solution to,
(Véu, Vo) — (Df(uF)du,v) = (f(uF),v) — (VuF, Vo), YoeV.
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Exercise 9.4 Derive Newton’s method for the Predator-prey system.
Sol. Let vt = uf + Suy, i = 1,2, where duy, dus € Vo = {v € V : v]pq = 0}
solves,

(V5U17 VU) - ((1 - ug)6u17v) + (ullc(su%v) = _(vulf7 VU) + (U}f(l - Ug), U)u
(Voug, Vo) — (usdur, v) + (1 — uf)dus, v) = —(Vus, Vo) — (u5(1 — u}),v),

for all v € V.

Exercise 10.1 Compute the least squares solution to a linear system Az = b.
Which norm is minimized by this solution?

Sol. We solve the normal equations z = (AT A)~1ATh = { 2

3 } . The residual

Az — b is minimized in the Euclidean norm.

Exercise 10.2 Verify that the standard FEM for —eu,z + u, = 1 on
0<z<1andu(0)=u(l)=0is,

fz+1 — 2§+ & fz'+1 — &1
h? 2h

= 1. (1)

where 1 =1,2,...,n— 1.

Sol. We fix the text function to ¢; and note that only three functions in the
trail space overlap, namely ¢;1, ¢;, and ¢;_1. The finite element method
now gives us the following relation,

i+1
Z 5] SOJ,SOZ (90;,%)) :(17(;01)7 it=1,...,n—1

j=i—1
We compute the integrals (¢},1, %)) = —h™", (¢}, ¢}) = 2071, (¢i_1,¢}) =
—h™ (G i) = 0.5, (¢, 01) = 0, (pj_1, ) = —0.5, and (1,¢;) = h for
i=1,...,n— 1. Equation (1) follows immediately.

Exercise 10.3 Derive the GLS method for,

—eAu+b-Vu+cu=f, z€Q u=0, zecd.



Describe the arising linear system.
Sol. The GLS approximation is given as solution to, find u;, € V}, such that,

(eVuy, Vo) + (b- Vuy,v) + (cup,v) + 9 Z (b Vup + cup,b- Vv + cv)
Kek

= (f,v) +(f,b- Vv + cv),

Ch?, ife>h
Chlb|7L(Q), ife<h "

symmetric and has an additional symmetric positive term.

The matrix is non-

for all v € V},, where 6 = {

Exercise 10.6 Show that [[[v]||* = €[|[Vv|[7:q) + 0[lb - V|72 is a norm
on H} ().
Sol. (i) We have

[IX0][1* = el VAV L2 + 0l VA L2(q)
= A2 (ell Voll ey + olle - Volliamy ) = ARl
(il) We let (v, w) = €(Vv, Vw) 4+ 0(b- Vu,b - Vw) and note that,
(v, w) < €l|Vull 2@ [Vl 2@ + 0116 - Vol 2|6 - Vwll 2
< (el Vollfa) + 0l VUllZai) ! - (el VewllZaq) + 0l Vawll7a@)
= [l[olll - Hwlll,
since (ab + cd)? < (a® + ¢2)(b* + d?) for a,b,c,d € R. We conclude.

[llv+wl|* = (v, v) + (w, w) +2(v, w) < ([[[o]l + [[lw]])*.

(iii) It is clear that |||v||| > 0. Furthermore |||0||| = 0. Finally if |||v||| = 0 we
have || Vvl 12@) = 0 so v is constant but the only constant in Hj(f2) is zero
sov=0.

Exercise 10.7 Show that a, (v, w) = ¢(Vv, Vw)+(b- Vv, w)+d(b-Vv,b-Vw)
and I, (v) = (f,v) + 6(f,b- Vv) are continuous on V.

Sol. We have ay,(v,w) = (v,w)+(b-Vo,w) < |||[v|[|-|[|[w]||+]|b-Vv| 20 |w|| L2 (0) <
(14 Co~ 22 o] - ]l Furthersmore, t(0) < |1£]Lz20) (o] 2oy + 811
Vollzagy) < (€2 +82) [ fll 2@l 0]l



