Collision detection & physics

s What and why?
*» Want to model collision (and other physical effects) in games
» E.g. bouncing balls, walls, sliding, gravity
= Modelling collision
® Which collisions to check for?
» How detect collisions?
» How handle collisions?
* Consequences in the game world of the collisions

= Book reference: chapters 11 and some of chapter 5



Collision detection goals

= A collision detection scheme for a particular game:
» Discard as many objects as possible which cannot collide

* Slow to examine every object in a large game world

» Quckly decide whether objects collide
e Use collision detection which 1s accurate enough

* Trade-off between precision and speed

» Does not annoy the player

+ Better to use smooth motion effects etc.



Basic collision detection

= Each game update, do:
» For each object in the game world

1. Update the object's location
2. Check for collisions with other objects or the environment

3. If a collision 1s found, revert the object to its previous location

= Do you understand the game world consequences of this?

» Imagine two balls moving towards each other with the same speed,;
what would happen when they collide (with this basic scheme)?



Tile world example

= Setting: a 2D tile world game. The player can walk around and
jump. If they touch evil monsters (sprites), they die...

s Assume that each sprite fits in one tile

= Then collision detection can be roughly:
» Let (s.x, s.y) be the pixel coordinates of sprite s' bottom-left corner
» boolean 1sCollision(Sprite s1, Sprite s2) {

return

sl.x <s82.x + s2.width() && s2.x <sl.x + sl.width() &&
sl.y <s2.y + s2.height() && s2.y < sl.y + s1.height();



Tile world example

= Setting: a 2D tile world game. The player can walk around and

jump. But we want to forbid moving through walls, ceilings and
floors...

= Essentially, every update we must check whether the player (a

sprite) collides with some hard obstacle; and 1f so, change their
position accordingly



Tile world example

s Detecting collisions with tiles
» Assume that the player's size is one tile

@ The player can be in 1 up to 4 tiles at any time (we don't assume
that movement 1s aligned with tiles — e.g. jumping/falling is
allowed)

» The player may move over many tiles between two updates

= (Given the player's old and new position, we want to know if they
hit any solid tile during the movement

s So how would you implement this?



Tile world example

= (Consider this pseudo-Java implementation:

Point getTileCollision(Sprite s, Point new) {

float fromX = min(s.x, new.x), fromY = min(s.y, new.y);
float toX = max(s.x, new.x), toY = max(s.y, new.y);

int fromTileX = pixelsToTiles(fromX); // divide by tile size

(and analogously define tile coordinates fromTileY, toTileX and
toTileY here)

for (int x = fromTileX; x <= toTileX; x++)
for (int y = fromTileY; y <= toTileY; y++)
if (tileMap.getTile(x, y).isSolid())

return new Point(X, y)

J

= What can be improved here?



Tile world example

It the player collides with a solid tile, we set their position so that
they are not inside the tile (next to i1t will do)

How do we handle collisions with several tiles at once?

We can split up the movement into horizontal and vertical
components and handle collisions separately

» Then there 1s at most one collision per component
If we do this, the implementation we described works

» But if the time between updates 1s high, objects may pass through
each other...



A discretization problem

= The discrete time 1ssue:
» What if objects collide between updates?

* Imagine the following 2D scene: a black ball is standing still,
and a white ball moves quickly towards the black ball

+ If the white ball can cover more pixels in one frame than the
black ball's diameter, we may not detect the collision

» Solution: interpolate between frames

* Check some positions which are passed between frames

* Again, we have a precision v.s. time trade-off



Eliminating tests

= Which objects can collide with each other?
» If an object doesn't move, it won't hit other objects
» An object can only hit objects which are relatively close to it
+ Assuming normal/predictable movement (e.g. no teleporting :)
= How implement relatively close”?
» Divide the world into a grid

» An object can only hit objects 1n the same or neighbouring cells



Quick collision detection

= Bounding spheres (circles in 2D)
» Surround the objects closely by spheres

e (Collision detection as: if two object's spheres collide, we say that
the objects have collided

= Improving precision for bounding spheres:

» Use another level of spheres: surround the object by a union of
several (small) spheres

@ Collision detection 1s then stepwise: if the first level spheres
collide, check the second level spheres

® You can add more levels for more precision



Quick collision detection

= Bounding cylinders (rectangles)

» Upright cylinders are more precise for tall and thin objects than
spheres are

» Also quick to check
= You can now 1magine a flexible general scheme:

» For each object, use a simple geometrical figure which fits well
around 1t (like an upright or lying cylinder or a sphere)

» Improve precision by adding more levels (at each level choose a
new nicely fitting figure)



Bounding rectangle example

= The objects collide 1f the bounding rectangles overlap

» Here the test 1s imprecise: the rectangles overlap, but the objects
don't actually touch...

T
#020 RATICATE



Collisions with the environment

s (Game worlds may be represented in a way which allows for more
efficient collision detection with the environment

» For example, if a 2D world 1s split up into tiles, we get exact
bounding rectangles for walls, ceilings and floors for free. The
project game has tiles.

» If you are interested in representation of 3D worlds, you will find
more info in the book (and you might want to take our Computer
graphics courses :)



Nice collision handling

= If we just stop the player when it hits a solid object, it may be
annoying for them

s (Collision handling which does not annoy the player

» Smooth effects, like sliding along walls etc.



Object-to-object sliding

s Sprites smoothly sliding off each other when colliding, instead of
stopping
s How implement this?

» Move the moving object the least distance away from the non-
moving object so that their boundaries no longer overlap



Object-to-wall sliding

s Where should a sprite slide end up when sliding against a wall?
» Direction: slide parallell to the wall :)

* the direction vector 1s illustrated in fig. 11.14 in the book

» Distance: computed by projecting the vector from the collision
point to the goal point in the direction of the slide

= But this implementation gives jerky sliding



Smooth sliding and gravity

= Sliding upwards on stairs/upwards leaning walls can be nicely
done by applying an acceleration on the sprite

s Falling can be implemented by actually applying gravity
(surprise)

» Simply add a downward acceleration to the sprite when its velocity
1s updated



Physics of jumping

= Jumping 1s quite simple once you have gravity

@ Just apply an upward velocity (and let it diminish as usual by
gravity)

= [If you want to control the height of a jump, you can compute the
upward velocity which is needed for that

» By the energy conservation laws (if they are called that) we have:
» mgh = mv/"2/2 (v 1s the upward velocity, h 1s the height)

@ which reduces to: vA2 = 2gh



Physics of collision

= We have good physics models thanks to Newton (and probably
other scientists as well)

» Friction, 3D, different weights and materials, many objects
colliding

s Let us make things simpler for us

» No friction, 2D, no mass (ok, mass 1), no weird materials, only 2
objects colliding at any one instant

= The basics of wall bounces: it's just reflection :)

» angle: as if a ray from the ball in 1ts velocity direction was
reflected from the wall

» size: unchanged — by momentum laws



Physics of collision

s What about ball to ball collisions?

= We can model 1t as two collisions with walls
@ (or we could compute the force components :)

» the impact 1s along a vector normal to both ball surfaces at the
point of collision

» the "wall" which the balls bounce against 1s perpendicular to that
normal vector

= So now we know simple 2D bouncing

@ But it 1s too simple for many games

» Especially for pool: we really want friction and rotation (and
probably 3D :)



