Keyboard and mouse input

= What and why?
» Mapping keys and mouse events to game actions
» Want the user to be able to configure their input control
» Essential part of any game

s Book reference: chapter 3

» Chapter 3 also includes a section about creating user interfaces,
both design tips and Java



Java iput

Our game code 1s all built on AWT

@ Java's core standard graphics library with Frames etc.

When an input event occurs, AWT notifies all listeners of that
event

» Essentially: "Yo, someone just pressed the space bar"

» The notification 1s done by the AWT event dispatch thread; so keep
synchronization in mind

* e.g. don't change the game state in the middle of a draw

Any object can be a listener of certain events by implementing
the corresponding listener interfaces

» Implement a function which is called every time the event occurs



Keyboard input

If you have programmed Java before, you might be used to pop-
up windows which take text

We will do lower level stuftf: handling the actual keys being
pressed

To capture key events you need to:
 Implement a KeyListener
» Register the listener to listen for events on a certain object

* e.g. register with the game Window



KeyListener

= A.k.a. interface java.awt.event.KeyListener

= You might want to check out Sun's tutorial on KeyListener

@ It 1s linked to from Sun's Java doc of KeyListener
(http://java.sun.com/j2se/1.4.2/docs/api/)

= To implement a KeyListener, you need to implement three
methods:

» keyPressed(e)
» keyReleased(e)
» keyTyped(e)

» where e 1s a KeyEvent



KeyListener

s keyTyped 1s a higher level event (than the other two), which 1s
called when a Unicode character is called

s keyPressed and keyReleased are simply called whenever a key 1s
pressed and released respectively

@ See the documentation for exact definitions

= A KeyEvent contains information about which key was pressed,
represented as a virtual key code

» The virtual key codes are defined in KeyEvent
» Note that the info 1s about which key was pressed; not the character

* E.g. characters q and Q have the same virtual key code



KeyListener

= Let's look at KeyTest.java (p. 96)

» It just prints when keys are pressed and released, and the name of
them

= Catching a pressed key (in pseudo-Java):

void keyPressed(KeyEvent e) {
int keycode = e.getKeyCode();
if (keyCode == KeyEvent. VK_ESCAPE) stop();
else
addMessage(''Pressed: " + KeyEvent.getKeyText(keyCode));



Mouse mnput

= The mouse can do these things:
» Mouse button clicks
» Mouse motion
» Mouse wheel scrolls (possibly)
s FEach event has its own listener; in the same order:
@ MouseListener, MouseMotionListener, and MouseWheelListener

» Each take a MouseEvent as parameter



Mouse listeners

s The MouselListener interface has methods for
® mouse presses, releases and clicks

* clicks are higher level combinations of presses and releases

» the pressed button 1s available via getButton()

s The MouseMotionListener can detect regular motion and drag
motion

® a drag motion 1s motion with a button pressed
» the current position of the mouse 1s available via getX() and getY()
s The MouseWheelListener can detect wheel scrolls

» getWheelRotation() gives the 'size' and direction of the scroll



A Mouselistener

= A test program: MouseTest.java (p. 102)

» Shows "Hello world" as a trail after the mouse pointer
s (Catch mouse movements and store visited points:

void mouseMoved(MouseEvent e) {

Point p = new Point(e.getX(), e.getY());
trailList.addFirst(p);
while (trailList.size() > TRAIL_SIZE)

trailList.removeLast();



A Mouselistener

s Draw the trail:
@ In the draw method, do:

for (int 1 = 0; 1 < trailList.size(); 1++) {
Point p = trailList.get(1);
g.drawString("Hello World!", p.x, p.y);

}
s That's 1t :)



Game 1nput

s Structured input handler:
» Handles all key and mouse events

@ Saves the events so you can process them when you want to,
instead of when the event dispatch thread wants to

» Detects the 1nitial press for some keys and whether the key 1s held
down for others

* e.g., you typically want to be able to hold down a key to keep
moving, not having to tap it — but maybe opposite for jumping

» Maps keys to game actions
» Can change the key mapping in run-time

* So the user can reconfigure controls



Game 1nput

= Let us look at an implementation of an input manager

s GameAction.java 1s used to keep track of input events relevant to
a game action

» such as whether i1t was triggered at all; "was the jump key pressed?"

» GameActions can be mapped to virtual key codes, to enable
dynamic reconfiguration of keys



Game 1nput

= How do we map keys to game actions? And how do we do it
dynamically?

= Well, we can just store a map of virtual key codes to game
actions, and update this when the user wants to reconfigure
control

» Create GameAction objects, and index them by key codes



Game 1nput

s InputManager.java (p. 1138)

» has code for mapping game actions to key codes and mouse events
s Uses an array for the mapping:

» GameAction[] keyActions = new GameAction[K];

void mapToKey(GameAction gameAction, int keyCode) {
keyActions[keyCode| = gameAction;

J
s Test program: InputManagerTest.java (p. 134)

@ Tests the input manager with a jumping figure



Summary

s Keyboard and mouse input
» Handle key and mouse events
= Mapping keys to game actions
» Dynamically change it

* User interface (a menu for binding keys)

— See chapter 3 for a refresher on graphical user interfaces

= Many good examples in the book

» Explore...



Wednesday 22 June

s QGuest lecture followed by project lecture!
@ 13.15 1inroom 1211: guest lecture by Starbreeze

» Followed by project lecture by Jim



