
1

Introduction to Java

Summer 2005

Frédéric Haziza
(daz@it.uu.se)

Games Course, summer 2005

2

Outline

● Where to get Java

● Compilation

● Notions of Type

● First Program

● Java Syntax

● Scope – Class example

● Classpath

● Object - Instance

● API

3

● Where to get Java
– Compilation

– Notions of Type

– First Program

– Java Syntax

– Scope – Class example

– Classpath

– Object - Instance

– API

4

Language Evolution

● J2SE : Standard Edition

– Suitable for 'usual' Desktops

● J2EE : Enterprise Edition

– Suitable for Servers

● J2ME : Minimal Edition

– Suitable for Mobile

Your friend:
http://java.sun.com

5

Java 2 SDK

● Standard Development Kit

– Latest stable version : 1.4.2 and 5.0

– http://java.sun.com/j2se/index.jsp

● JRE : Java Runtime Environment (java command)

– Able to run Java programs only

● Compilation (javac command)

– Comes with the SDK, able to build and run Java programs

6

● Where to get Java

● Compilation
– Notions of Type

– First Program

– Java Syntax

– Scope – Class example

– Classpath

– Object - Instance

– API

7

The Java Programming Language

● Object-Oriented

● See :
http://java.sun.com/docs/books/tutorial/java/concepts/index.html

● Compilation is necessary

● Compilation = Translation of human readable code
into machine code

8

Java Virtual Machine

● JVM : Java Virtual Machine

● Bytecode

● “Written once, Runnable everywhere”

9

● Where to get Java
● Compilation

● Notions of Type
– First Program

– Java Syntax

– Scope – Class example

– Classpath

– Object - Instance

– API

10

Cooking an egg

● 2. The materials :

– A pot (No holes and empty)

– Water (sufficiantly, no nitrates)

– A stove (Heat power mini 1000 Watts)

– an egg (Not roten)

● 1. Name of the recipe : Cooking egg

● 3. Actions :

– Put water in the pot

– Boil the water

– Put the egg in the water

– Wait 3 minutes

– Take out the egg from the water

11

Algorithm

● Algorithm :

– 1. Name

– 2. Data, which are used in the algorithm

– 3. Behaviour, description of the chained actions

● The person knows what actions are possible with the specified objects

– Put the pot in the egg,

– boil the egg,

– cut the pot in small piece.

● The pot can be in different states : empty, full of water or milk, to a specific
temperature

● All pots have properties that distinguish them from oven.

==> The item pot is of type "pot", or belongs to the class "pot"

12

Type

● In algorithmics, all items have a type. This type combines:

– a set of values/attributes/states that this item can have/take

– a set of actions, which can be applied to those item of that type,
allowing to get/set/modify the values.

● Because the operation "cut in small pieces" hasn't been defined for
the type "pot", it is impossible, and even forbidden, to cut a pot in
small pieces.

13

Predefined types

● int, long, short

● float, double

● boolean

● char

● byte

● void
__

● Self contained type

● Determines the set of value it can have

14

Primitive Type Example
● For byte, from -128 to 127, inclusive (8bits)

● For short, from -32768 to 32767, inclusive (16 bits)

● For int, from -2147483648 to 2147483647, inclusive (32 bits)

● For long, from -9223372036854775808 to 9223372036854775807, inclusive
(64 bits)

● For char, from '\u0000' to '\uffff' inclusive, that is, from 0 to 65535
(16 bits -- unsigned)

178
8864L
37.266

37.266D
87.363F

26.77e3
'c'
true
false

int
long
double
double
float

double
char
boolean
boolean

Literal Data TypeLiteral Data Type

15

Strings

● Character chains

● Special class in Java, just for our convenience :)

● String str1 = “Salut”;

● String str2 = “comment ça va?”;

● String str3 = str1 + “, ” + str2;

● str3 ----> Salut, comment ça va?

16

Type Conversion

● Type conversion = change from one type to another

● byte i; (max of 127)

● int j = 468;

● i= j;

● Value of i ?

– 468 in binary is 111010100

– Depending on the system:
111010100

-84

-106

17

Type Cast

● Type cast = identify as belonging to a certain type

● int i; short j; float k;

● i = 468;

● j= (short)i; (No problem, 468 spans within the range)

● k = 3.2;

● i = (int)k; NB: i is 3 only!

● String str = “3”; i = str3; ==> Cast error

● Idem for classes (cf. later)

● Conclusion:
– Not always possible, could lead to mishandlings

– Permits to view temporarily a typed variable as another type

18

● Where to get Java
● Compilation
● Notions of Type

● First Program
– Java Syntax

– Scope – Class example

– Classpath

– Object - Instance

– API

19

“Hello World!” example

System.out.println(“Hello World!”);

{

}

public static void main (String[] args)

class FirstProgram{

 }

20

“Hello World!” revisited

class SecondProgram {

}

public static void main(String[] args)
{

}

if(args.length>0)
{

System.out.println(“Welcome to the real world, ” + args[0]);
}
else
{

System.out.println(“No arguments, welcome anyway!”);
}

21

● Where to get Java
● Compilation
● Notions of Type
● First Program

● Java Syntax
– Scope – Class example

– Classpath

– Object - Instance

– API

22

Java Syntax

● Statements are followed by a semi-colon

– System.out.println(“Hello World!”);

● Blocks are embraced in curly braces {}

● Parameters are supplied within brackets ()

● List items are accessed through []

– List[3] is the 4th item in the list, if it exists...

23

Identifiers

● Examples:

– String i3 MAX_VALUE isLetterOrDigit

● No start with a digit

● No start with ?:';^(\)”<>$&|-+/*%!

● Keywords

– abstract default if private this boolean do implements
protected throw break double import public throws
byte else instanceof return transient case extends int
short try catch final interface static void char finally
long strictfp volatile class float native super while
const for new switch continue goto package
synchronized

24

Comments

● There are two kinds of comments:

– /* text */ all the text in between is ignored

– // text all the text to the end of the line is ignored

● Comments do not nest

● Special comments: Javadoc comments

– /** javadoc comments */

25

Operators

= > < ! ~ ? :

== <= >= != && || ++ --

+ - * / & | ^ % << >> >>>

+= -= *= /= &= |= ^= %= <<= >>= >>>=

26

Coding Conventions

● Class names start with a capital letter

● Method and variable names start with a small letter

● If the name is composed of several words (to give
some sort of sens to it), each word begins with a
capital letter, no space, no underscore

– extractSomePetrolFromTheGround(Technic t){}

– BankAccount familyAccount;

● Indentation : “SimpleScreenManager.java”

27

Visibility

● 4 access modifiers

– 'private', 'protected', 'public' or nothing
(you can see 'friendly' sometimes)

● Public: all class can access the attribute / call the method

● Private: only the current class can

● Protected : children can

Private

Protected

Public

28

Method declaration

● Signature = Combination of return value, name,
parameters list and access modifiers

● public static void main(String[] arg){...}

● private static void main(String arg){...}

==> <AccessModifiers...> <Return> <Name>(<Typed Param...>){...}

29

Variable declaration

● int i; // Declaration

● i=17; // Affectation

– int i = 17; // Both

● int i = 12; // Illegal, i is already defined

● int[] myArrayList = new int[3];

● int[][] myMatrix = new int[2][3];
● BankAccount[] myArrayListOfAccount = new BankAccount[5];

30

● Where to get Java
● Compilation
● Notions of Type
● First Program
● Java Syntax

● Scope – Class example
– Classpath

– Object - Instance

– API

31

Global or local ?

● Scope of variable declaration : global or local

● Example of code

if(...)
{

int i= 17;
}
System.out.println("Here is i : "+i); // Error

32

The class Person

● Implement an entity that represents a “Person”

● Properties :

– Name, P-nummer

– Address, City

– Phone number
● Requirements :

– Can have several phone numbers

– Can change address, city, phone numbers

– Implement getters and setters

– Return the age of the person

33

The class Person

● “Person”

● Properties :

– Name, P-nummer

– Address, City

– Phone number

● Requirements :

– Phone numbers

– Change address, city,
phone numbers

– getters/setters

– age of the person

private String name;
private String address;
private String city;
private String pNum;
private int[] phoneNumbers=new int[5];

public class Person {

}

 public Person(String aName, String anAddress,
 String aCity, String aPNum)

 {
name = aName;
address = anAddress;
city = aCity;
pNum = aPNum;

 }

 public String getCity()
 {

return city;
 }

 public void setCity(String aCity)
 {

city=aCity;
 }

No comments!

Does it fullfil the
requirements?

34

● Where to get Java
● Compilation
● Notions of Type
● First Program
● Java Syntax
● Scope – Class example

● Classpath – File Naming
– Object - Instance

– API

35

Where from?
● Call the BankAccount class :

where does it the class definition come from?

– The JVM detects a BankAccount type, so looks for a file
named “BankAccount.class” under the classpath.

● If your classpath doesn't point to the BankAccount class
definition, the class you're currently writting won't compile.

● The JVM doesn't go down the folder tree, you must simply add
folders to the classpath.

==>prompt>CLASSPATH=folder1:folder2:folder3

● You can specify the '.' folder into your classpath

– the JVM will examine the current folder.

● It will parse the classpath in order.

36

Inheritance

Profession

Lawyer Driver Secretary

TaxiDriver BusDriver Driver

 Note : No multi-inheritance...

37

Inheritance (cont'd)

● TaxiDriver inherites from the Driver class.
A TaxiDriver is a Driver too.

● class Driver {...}

● class TaxiDriver extends Driver{...}

● TaxiDriver specializes the Driver class.

38

Extending the Person class

● Recall the Person class

● Extend it with some extra fields and methods

● ==> ExtendedPerson.java specializes Person.java

● See the implementation and code choices

39

● Where to get Java
● Compilation
● Notions of Type
● First Program
● Java Syntax
● Scope – Class example
● Classpath – File Naming

● Object - Instance
– API

40

Object - Instance

● A class is a module that regroups several actions
and encapsulates data

● Also a user-defined type

● Once the class is declared, we can create instances
of it, the same way we declare a variable of a
primitive type

int i;

int j,k;

BankAccount myAccount, yourAccount;

41

Reference - Instanciation

● myAccount and yourAccount are not objects but
references to objects. Those objects are not created yet.

● They point to nothing, they have the value "null"

● By using the operator 'new', we create an instance
(and allocate the necessary memory space).

● The result of that operation can be appointed to the
myAccount reference.

==> myAccount = new BankAccount();

● This instance can be designated by other references:

==> yourAccount = myAccount;

42

Null - Affectation

Once the instance is created we can pass messages to it,
meaning we can call the methods that it embodies. It is
important that this reference designates an instance before we
pass messages onto it.
(it will result a NullPointerException which stops the JVM)

See blackboard

43

Scope (cont'd)

● Recall that a variable can be global (to the class) or
local (to the block, typically the method)

● An object will stay “alive” as long as a reference
points to it.
(No need to clean up though: Garbage Collection)

● Important:
BankAccount a = new BankAccount();
BankAccount b = a;
changeSomethingInBankAccount(a);
==> b has also changed !
b was just another reference to the same object

● For more information: See cloning and deep-cloning

44

● Where to get Java
● Compilation
● Notions of Type
● First Program
● Java Syntax
● Scope – Class example
● Classpath
● Object - Instance

● Import - API

45

Import and API

● API = Application Programmable Interface

● If you want to reuse code from other class, the user
must supply an additional line of code

import java.util.Vector;
import java.util.LinkedList;
import java.util.Calendar;
...

● http://java.sun.com/j2se/1.4.2/docs/api/index.html

