
Threads 1

Slide 1

Threads

• When writing games you need to do more than one thing at once.

• Threads offer a way of automatically allowing more than one

thing to happen at the same time. Java has threads as a

fundamental feature in the language. This will make your life

much easier when you write games in Java.

• Threads are related to processes and multitasking.

Slide 2

Example

• Suppose that you are a poor student and you need to earn

money. To earn money you get a job answering technical support

calls for a company specialising in software to derive new

weaving patterns for Turkish carpets. As it turns out there is not

a very large user base and you only get 4 or 5 calls a day (but

the pay is good).

• You have to revise for an exam. You hit upon the idea of revising

while you are waiting for calls. When a call interrupts you go

away from you books and deal with the customer.

Threads 2

Slide 3

Example Continued

• The last example was easy. You had plenty of time to go back

and forward between the books and the exam.

• Now consider a more important situation. You are going to play

in a counter strike tournament and at the same time you need to

watch an important Hockey match between Sweden and Russia

while you are doing your revision.

• You can again multi-task. You spend a little bit of time on each

activity swapping between them. If you are fast enough you

might be able to do all three (almost at the same time).

Slide 4

Context Switching

• Going back to the first example. Suppose that you have spent

too much of your time on fast living and your memory is not as

good as it should be.

• When you answer the phone you put a bookmark in the book so

you can remember where you are.

• When you go back to the book you use the bookmark to work

out where you are.

• This is an example of a context switch. You want to go from one

task to another you save information to remember where to go

back to.

Threads 3

Slide 5

Context Switching

• The computer does the same thing with running programs. If it

wants to switch tasks. It saves all the information needed

(program counter, values of variables), so the program can be

returned to.

• This can happen without the program knowing it. Think of it as

cryogenetics for programs.

• The operating system forcefully stops the current task saves that

state and starts another task from a previously saved state.

Slide 6

Threads and Processes

• There is a technical distinction between threads and processes.

That need not worry us here. You can think of a process as a

whole program (such as emacs, word, minesweeper, mozilla). The

operating systems allows more than one process to run at the

same time.

• A thread is a unit of execution with in a process. That has less

overhead and quicker context switch time.

• Threads can share data while processes can not (not always true

but true enough).

• Threads are lightweight processes.

Threads 4

Slide 7

Multitasking

• A computer can give the illusion of doing more than one thing at

once by time slicing.

• Each task is given a small amount of time to run before the next

task is switched in.

• Context switches take care of all this.

• Of course every thing runs slower, but you have more flexibility.

Slide 8

Threads and Java

• In Java there is a special thread class that manages all the above

for you.

• To create a new thread you could do the following :

Thread myThread = new Thread();

mythread.start();

This would not do much since the default thread class does not do

anything (apart from managing all the context switching stuff).

Threads 5

Slide 9

Threads and Java

You have three choices:

• Extend the Thread class

• Implement a runnable interface

• Use anonymous classes.

Slide 10

Simple example

public class MyThread extends Thread {

public void run() {

System.out.println("Do Something.");

}

}

Then later on when you actually want to do something.

MyThread myThread = new MyThread();

You can even use constructors (see next example).

Threads 6

Slide 11

public class MyThread2 extends Thread {

private int theadid;

public MyThread2(int id) { threadid = id; }

public void run() {

for(int i=0; i<10000 ; i++) {

System.out.println(threadid + " : " + i);

}

}

public static void main(String[] args) {

Thread thread1 = new MyThread2(1);

Thread thread2 = new MyThread2(2);

thread1.start();

thread2.start();

}

}

Slide 12

Interfaces

• Inheritance (extends) has the problem you can only extend from

one class.

• This would make your program design quite hard.

• To get over this we can use interfaces.

In general, an interface is a device or a system that

unrelated entities use to interact. According to this

definition, a remote control is an interface between you

and a television set, the English language is an interface

between two people.

Threads 7

Slide 13

Interfaces

• A class can only extend another class while it can have many

interfaces.

• Interfaces are declared in a similar way to classes. You probably

won’t need to define any yourself.

• But you will need to use some of the system provided ones for

example MouseListener , Runnable, MouseEvent ,

Slide 14

public class MyThread3 implements Runnable {

public MyThread3() {

Thread thread = new Thread(this);

thread.start();

}

public void run() {

System.out.println("Hello.");

}

public static void main(String[] args) {

MyThread3 thread = new MyThread3();

}

}

Exercise rewrite the first two examples using runnable.

Threads 8

Slide 15

Detour - Static Members

.

• A static member of a class has only one instance no matter how

many times the class is instantiated.

• Question what is printed on the following example and why?

• What happens if we change static int counter to int

counter

• Static members are best avoided (they are error prone and it is

hard to debug what is going on). But they are sometimes useful.

Slide 16

public class StaticExample {

static int counter = 0;

public StaticExample() { counter++;}

public int HowManyTimes() { return(counter);}

public static void main(String[] args) {

StaticExample x = new StaticExample();

StaticExample y = new StaticExample();

StaticExample z = new StaticExample();

System.out.println(z.HowManyTimes());

}

}

Threads 9

Slide 17

When does the context switching happen?

• It is up to the runtime system when the context switch happens.

This means it could happen while you are doing something.

• In particular you could be updating a piece of shared data and

the runtime system swaps tasks during this. The system is then

left in an inconsistent state.

• In the following example we require (for illustration only) that

xpos and ypos are always equal.

• We put a test to see if they are equal.

• The thread itself is very simple.

Slide 18

public class BadSynch extends Thread {

static private int xpos;

static private int ypos;

public void run() {

for(int i=0; i<1000; i++) {

xpos++;

ypos++;

if(xpos != ypos) {

System.out.println(":-(" + xpos + " " + ypos);

}

}

}

Threads 10

Slide 19

If we create two threads and run them in parallel.

public static void main(String[] args) {

Thread thread1 = new BadSynch();

Thread thread2 = new BadSynch();

thread1.start();

thread2.start();

}

}

We will see lots of unhappiness. (Try it and see).

Slide 20

Be Warned!!!

• With threads you do not know
which order things will be
executed or when the context
switched.

• It might be luck that that the
program works.

Threads 11

Slide 21

Version without static members

• Instead of using static members, we should use objects and

object references to communicate.

• The general idea is that you give the reference of an object to

multiple threads to communicate with.

• To redo the previous example we use a class DoubleCounter to

hold the values of x and y.

Slide 22

public class DoubleCounter {

private int x;

private int y;

public DoubleCounter() {

x = 0; y = 0;

}

public void add_one() { x++; y++;}

public boolean happy() {

if (x==y) { return(true);}

else { return(false); }

}

}

Threads 12

Slide 23

We can then redo the example by passing a double counter object via

the constructor for the class.

public class BadSynch extends Thread {

private DoubleCounter counter;

public BadSynch(DoubleCounter newcounter) {

counter = newcounter;

}

public void run() {

for(int i=0; i<1000000; i++) {

counter.add_one();

if(!counter.happy()) { System.out.print(" !-("); }

}

}

Slide 24

Then we create one double counter and pass this to both threads.

public static void main(String[] args) {

DoubleCounter sharedcounter = new DoubleCounter();

Thread thread1 = new BadSynch(sharedcounter);

Thread thread2 = new BadSynch(sharedcounter);

thread1.start();

thread2.start();

}

}

Run it and see, you will still see lots of unhappiness.

Threads 13

Slide 25

Synchronize

• The whole problem can be avoided by putting locks on data.

• You can put a piece of data in a room with a door. When a

thread wants to modify the data it goes in through the door

locks it so nobody else can get in and modify it.

• When it has finished it unlocks the door and leaves.

• This is achieved in Java with the Syncrhonized keyword.

Slide 26

Example

Replace with the new DoubleCounter and expect no unhappiness.

public class DoubleCounter {

private int x;

private int y;

public DoubleCounter() {

x = 0; y = 0;

}

public synchronized void add_one() { x++; y++; }

public synchronized boolean happy() {

if (x==y) {return(true);}

else {return(false);}}

Threads 14

Slide 27

Object Synchronisation

You can also objects as synchronisation points. You could rewrite the

above as:

public void add_one() {

synchronized(this)

{x++; y++;}

}

Remember this is a reference to the current object.

Slide 28

When to synchronise

• When two or more threads access the same piece of data.

• Don’t over synchronise. Synchronisation points force other

threads to wait.

• Use the syncrhonized(this) construction to only synchronise

at the critical points.

Threads 15

Slide 29

Anonymous Inner Classes

new Thread() {

public void run() {

System.out.println("Hello.");

}

}.start();

Should only be used for short fragments of code.

Slide 30

Deadlock

• The synchronise statement forces other threads to wait if they

are accessing shared data.

• You have the situation where a thread has locked a piece of data

that another thread wants which is locking a piece of data that

the first thread wants.

Threads 16

Slide 31

Deadlock example

• We will use semaphores to illustrate deadlock.

• Semaphores are shared variables (and in Java guarded by getters

and setters with syncrhonized statements). Where one value

means locked and another unlocked.

Slide 32

Semaphore Variables

public class Deadlock {

static int lockA=0; /* 0 if unlock 1 if locked. */

static int lockB=0;

public static synchronized int getLockA() {

return lockA;

}

public static synchronized void setLockA(int newLockA) {

lockA = newLockA;

}

Threads 17

Slide 33

public static synchronized int getLockB() {

return lockB;

}

public static synchronized void setLockB(int newLockB) {

lockB = newLockB;

}

Slide 34

Threads

In this example we will use anonymous classes. The first thread locks

A then locks B, then unlocks B and unlocks A.

First lock A and then do some work.

new Thread() {

public void run() {

System.out.println("P1: Waiting for A.");

while(getLockA()==1) {;}

System.out.println("P1: Got A"); setLockA(1);

try { Thread.sleep(5000); }

catch (InterruptedException x) {}

Threads 18

Slide 35

First thread continued

Now try and lock B then unlock.

System.out.println("P1: Waiting for B.");

while(getLockB()==1) {;}

setLockB(1);

System.out.println("P1: Got B.");

setLockB(0);

setLockA(0);

}

}.start();

Slide 36

Code for the second thread

new Thread() {

public void run() {

System.out.println("P2: Waiting for B.");

while(getLockB()==1) {;}

System.out.println("P2: Got B"); setLockB(1);

System.out.println("P2: Waiting for A.");

while(getLockA()==1) {;}

System.out.println("P2: Got A"); setLockA(1);

setLockA(0); setLockB(0);

}

}.start();

Threads 19

Slide 37

Output

P1: Waiting for A.

P1: Got A

P2: Waiting for B.

P2: Got B

P2: Waiting for A.

P1: Waiting for B.

Slide 38

How to avoid Deadlock

• There are no hard and fast rules to avoid deadlock.

• Essentially you have to look for cycles.

• There are tools that help, but they don’t help that much.

• The interleaving of threads is not defined, so sometimes that

code might deadlock sometimes it might not. In the previous

example if thread 1 completely finishes before thread 2 starts

then there should be no problem.

Threads 20

Slide 39

Wait and notify

Statements such as

while(getLockB()==1) {;}

Are not so efficient. This is called busy waiting, it has to check each

time around the loop . Java provides and pair of statements wait

and notify.

The behaviour is a bit complicated so I’ll just give an example.

pair of statements

Slide 40

Without wait and notify

// Thread A

public void waitForMessage() {

while (hasMessage == false) { ; }

}

// Thread B

public void setMessage() {

....

hasMessage = true;

}

Threads 21

Slide 41

With wait and notify

// Thread A

public sychrnoized void waitForMessage() {

try {

wait();

} catch (InterruptedException ex) {}

}

// Thread B

public synhronized void setMessage() {

...

notify();

}

Slide 42

wait and notify

• Essentially wait releases current locks and gives control back to

other threads.

• notify wakes up a thread that is waiting.

• If there is more than one wait a random thread is woken up.

• notifyAll(); wakes all the waiting threads.

Threads 22

Slide 43

Threads summary

• Threads allow you to do more than one thing at a time.

• Problems can occur with corrupted shared data.

• syncrhonized can solve this problem.

• Don’t syncrhonize too much.

• Don’t have too many threads (JavaVM can’t cope).

• Threads are non-deterministic. That is if you one the program

once and it works doesn’t mean it is going to work next time. Be

careful.

