
Bump Mapping

Anders Hast

Creative Media Lab

University of Gävle
Kungsbäcksvägen 47, S-801 76 Gävle, Sweden

aht@hig.se

1 Bump mapping

Blinn [1] introduced bump mapping as a technique that makes a surface
appear rough or wrinkled. This affect is achieved by perturbing the normals
used in the illumination computation. Hence, it only affects the shading, not
the underlying geometry. The bump map can contain height values that will
affect the normal of each pixel. However, it can as an alternative contain
normals that have been computed from such a bump map and this map is
then called a normal map [7].

Especially moving frame bump mapping[10] [7] is closely related to shad-
ing since it includes vector interpolation, which is the essence of Phong shad-
ing. Bump mapping is also closely related to texture mapping [5]. It will also
suffer from similar aliasing problems when bumps are magnified or minified.

Blinn used an approximation for the perturbed normal, which depends
on the surface normal and the height information in the bump map. The
perturbed normal is calculated as

n′ = n +
Fu(n ×Pv) − Fv(n× Pu)

||n|| (1)

where n is the surface normal, Pu and Pv are the partial derivatives of the
surface in the u and v directions respectively. Fu and Fv are the gradients of

1

the bump map. Peercy et al. [10] use another approach for computing the
normal. An orthonormal frame on the surface is used to rotate the vector in
the direction to the light source l into that local frame. As an alternative,
the bump normal could be rotated into the world by the same frame, i.e. the
inverse of the same matrix. However, it is more efficient to rotate the light
vector so it will be correct compared to the flat normal map. This can be done
per vertex and then the rotated light vectors are linearly interpolated over
the polygon. Hence, the diffuse intensity is computed as Id = n′ · l′, where n′

is the normal obtained from the bump map, and l′ is the light vector rotated
by the frame (t,b,n), where t is the tangent vector of the surface at the
point with the surface normal n and finally b is the bi-normal, computed as
n× t. They are taking this approach a step further by precomputing bump
normals over the whole object. Nonetheless, this is the main idea of moving
frame bump mapping. The perturbed normal is

n′ = (−Fu,−Fv, 1) (2)

which is obtained by computing the cross product of the gradients as shown
by Doggett et al. [2]. They also use Prewitt masks, which is a kind of convo-
lution kernel, to obtain Fu and Fv. Kugler [8] uses a different representation
of the normal perturbation based on spherical coordinates. Sung Kim et al.
[11] elaborates this idea further by directly computing the inner products
for the diffuse and specular light from the perturbed normal in this repre-
sentation. A hardware implementation of a bump mapping chip is proposed
by Ikedo and Ohbuchi [6], where vector normalization is avoided by using
vectors in angular form. Miller and Halstead [9] discuss how hardware ac-
celerated bump mapping using standard texture-mapping hardware can be
performed. An overview of other bump map approaches is given by Ernst et
al. [3] and Kilgard [7].

In this type of bump mapping, the frame is used to rotate the vector in
the direction to the light source. This can be done since a rotation matrix is
an orthonormal frame. That is, each column in a rotation matrix is a vector
and each vector has unit length and they are orthogonal to each other. This
fact is seldom mentioned in computer graphics text books, but it certainly
helps understanding the concept of rotation matrices. A rotation of θ degrees
around the z-axis is defined as

Rz(θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (3)

2

It is clear that the last column is a vector aligned with the z-axis. It is also
easy to see that this last vector is orthogonal to both the two first vectors
since the dot product between the last column and any of the two first is
zero. The two first vectors are also orthogonal since the dot product once
again is zero: cos θ · sin θ + (− sin θ · cos θ) + 0 · 0 = 0. Similarly it can
be shown that each vector has unit length. The length of the first vector is√

cos2 θ + sin2 θ + 02. The trigonometric unity gives that this is equal to one.
The same applies for the other two columns. Furthermore, each row is also
a vector and they also constitute a frame.

The interpretation of this concept is that if this frame is the same as
the world coordinate system, i.e. the unity matrix, then the object is not
rotated. However, if we rotate the coordinate system (or frame) the object
is defined in, then the object itself is rotated in the same way as the frame
is rotated. The same concept applies for both vectors and objects.

The conclusion is that if we want to rotate an object or a vector to a
certain position, we use a rotation matrix that contains a local frame that
defines this rotation. Moreover, this frame can be regarded as the local
coordinate system where the object or vector is defined.

If we use equation (3) to rotate a position vector p with

p′ = pRz(θ) (4)

then the frame will be found on the rows of Rz(θ). Note that the row vectors
are the inverse of the column vectors since the inverse of a rotation matrix
is the same as its transpose. Thus, in the moving frame bump mapping
approach, the inverse of the frame is used, i.e. the vectors in the frame are
stored in the columns.

Homogenous coordinates [4] expands this concept by allowing the frame to
be translated to any position in the world coordinate system. This is achieved
by using an extra coordinate telling whether the x, y and z coordinates define
a point or a vector.

References

[1] J. F. Blinn, Simulation of Wrinkled Surfaces, In Proceedings SIGGRAPH
78, pp. 286-292, 1978

3

[2] M. Doggett, A. Kugler, W. Strasser, Displacement Mapping using Scan

Conversion Hardware Architectures Computer Graphics Forum, Vol. 20
No 1. pp 13-26. 2000.

[3] I. Enrst, H. Rüssler, H. Schultz, O. Wittig Gouraud Bump mapping Work-
shop on Graphics Hardware, pp. 47-53. 1998.

[4] J. D. Foley, A. van Dam, S. K. Feiner, J. F. Hughes, Computer Graphics

- Principles and Practice Addison-Wesley, 1997.

[5] P. S. Heckbert, Survey of Texture Mapping IEEE Computer Graphics
and Applications, Nov. pp. 56-67. 1986.

[6] T. Ikedo, E. Ohbuchi, A Realtime Rough Surface Renderer, Proc. of Com-
puter Graphics International 2001 (CGI2001), IEEE Computer Socity
Press, July 2001.

[7] M. J. Kilgard A Practical and Robust Bump-mapping Technique for To-

day s GPUs Game Developers Conference, Advanced OpenGL Game
Development. 2000.

[8] A. Kugler IMEM: An Intelligent Memory for Bump- and Reflection-

Mapping Workshop on Graphics Hardware, pp. 113-122. 1998.

[9] G. Miller, M. Halstead, M. Clifton On-the-Fly Texture Computation for

Real-Time Surface Shading, IEEE Computer Graphics and Applications,
Vol. 18, No. 2, March-April 1998

[10] M. Peercy, A. Airey, B. Cabral, Efficient Bump Mapping Hardware, In
proceedings of SIGGRAPH 97, August 3-8, pp 303-306. 1997.

[11] J. Sung Kim, J. Hyun Lee, K. Ho Park A Fast and Efficient Bump

Mapping Algorithm by Angular Perturbation Computers and Graphics
No. 25, pp. 401-407, 2001.

4

