Older risk perspectives

- Elimination of risk
- Humans make errors and mistakes
 - Forms of errors
 - Types of errors
- Latent system failures
- Automation
 - Reduces total number of mishaps
 - Introduces new, different kinds of problems

A changing society

- "The fifth generation of technology is managed by the second generation of management"
 - Rapid technological changes
 - Large-scale industries more common
 - High degree of system integration
 - Tough competitions on global markets
 - Traditional scientific disciplines are not "on the edge"
New strategies

- Proactive risk management
 - The purpose is to identify and understand the mechanisms that generate actual decisions and judgments on all levels
- Adaptive risk management
 - The purpose is to create a resilient organization that is characterized by fast recovery

Proactive risk management

- Analyses of
 - Normal activities during normal work
 - How is the decisions and judgments shaped?
 - Present information context
 - How is the flow of information from a control perspective?
 - Overview of potential improvements
 - Top-down
 - Bottom-up

Proactive risk management II

- Purpose of the strategies
 - Identifying the borders for safe production
 - Visualizing these limits for managers and decision-makers
 - Implementing adaptive measures against all kinds of threats to these limits
Proactive risk management III

1. Which actors on different levels participate in the production processes in the socio-technical system?
2. What parts of the work domain are they responsible for and what do the criteria for allocating roles- and responsibility look like?
3. What does the structure for the distributed control system (communication network) look like?
4. On each level, questions are asked about what information each decision-maker has
 1. Purpose – are safety-related values communicated?
 2. Status – are the actors informed about the situation? Are the limits for acceptable production contingencies communicated?
 3. Ability – do the individuals have the right competence?
 4. Awareness – are the individual actors aware of the current risks? What about practice in every-day work?
 5. Priority – are decision makers on different levels convinced supporters of the general safety philosophy?

Analyses of accidents

- Chpt 3 is a survey of a number of accidents
 - Identification of all behaviors that contributed to a certain accident
 - Not only the behaviors explicitly being connected to the accident scenario

Different phases of analyses

- Accident analysis
 - A number of representative accidents are investigated
 - Causal relations are analyzed
 - Detailed picture of the accident scenario
 - Result in terms of cause-consequence-charts (CCC:s)
 - This analysis is also used in traditional risk analyses
Different phases of analyses II

- Identification of actors
 - All relevant roles/actors are defined
 - All levels must be represented
 - Result in terms of an AcciMap
 - More extensive than a CCC
 - Considering the rate of change that always is part of the accident scenario
 - Builds on models of normal as well as unusual events

Different phases of analyses III

- Generalization
 - Recommendations based on one accident solely will only result in an ad-hoc solution
 - Result in terms of a Generic AcciMap
 - Analyses from several and similar incidents and accidents
 - Analyses of the normal flow of activities

Different phases of analyses IV

- Work analysis
 - Analysis of communication flow between participating actors
 - Result in terms of an InfoMap
 - Based on the levels of decision-making that affect the final outcome
Categorizing risk contexts

- Chpt 4 tells us that risk management is different in different fields of application and the purpose is to create a taxonomy
 - Knowledge about minor work place accidents is often based on empirical conclusions, statistical correlations, and the measures are often directed toward the explicit causes in the work context
 - Knowledge about middle-size accidents is often of an evolutionary kind, case studies have a large impact on the measures implemented
 - Knowledge about large-scale accidents builds on analytical competence and measures employed are based on complex models of cause-consequence relations

Taxonomy for risk management

- A taxonomy for proactive risk management should contribute with
 - Analyses of accidents with succeeding generalizations in order to identify weaknesses
 - Design of safer systems that builds on the idea of warding off different kind of threats by using different forms control conditions
 - Design of risk management on the management level through vertical and functional flow of information
 - Introduction and acceptance of relevant control (inspection) systems

Representations of systems

- Structural decompositions (DH)
 - Causal explanations
 - The system in wholeness and parts
 - Necessary for learning
- Functional abstractions (AH)
 - Explanations in terms of functions
 - The systems general characteristics
 - Interaction based on experience
Taxonomy of accident scenarios

- Chpt 5 presents a framework for cause-consequence relations in accident scenarios
 - Analytical tools
 - Goal object: What or who can be affected?
 - Source: What systems/processes can be a potential threat?
 - Control strategies: What strategies are there to use?
 - How does the context of the whole accident scenario look like?

Goal object

- What or who can be affected?
 - The individual
 - The staff
 - The context/environment
 - The public
 - The investments

Sources of threats

- What systems/processes can be a potential threat?
 - Accumulation of energy in different forms
 - Liquids with high temperatures and pressures
 - Chemical processes, fires
 - Kinetic energy
 - Accumulation/release of poisonous substances
 - Threats against structures in temporary balance (instability in different forms)
 - Other categories (all kinds of sources)
Control strategies
- What strategies are there to use?
- Prevention by insensibility
 - Most often in design and planning phase
- Measures for potential threats
 - Reliable and redundant equipment
 - Education/training programs, procedures, rules to be followed
 - Barriers
 - Reduce the probability of unwanted events
- Reduce the effects of potential threats
 - Stop the chain of on going events
- Reduce the consequences

Socio-technical control
- Chpt 6 claims that proactive risk management can be viewed as a socio-technical control problem
- Feedback-based control strategies are not enough
 - "Open-loop" direct control problematic
- Feed-forward based models over possible scenarios necessary
 - "Closed-loop" model control with feedback necessary

Taxonomy for risk management II
- Chpt 7 presents a support system for proactive risk management
 - Identification of decision-makers/actors
 - Identification of the different actors roles and responsibilities
 - Structure of the communication network
 - Content of information flow
 - The actors risk awareness
 - The actors ability relative the threats
 - The actors attitudes towards risk
Roles and responsibility

- Functional division of work
 - Communication content affect “bottom-up”
 - Norms and practical experiences
 - Work load
 - Flexibility/agility
 - Competence
 - Available information
 - Safety/trustworthiness

Roles and responsibility II

- Division of work by social norms
 - Communication form affect “top-down”
 - Traditional hierarchical organization
 - Order (military model)
 - Procedures (economical model)
 - Purpose (administrative model)
 - Learning organizations
 - Differences in terms of how the information is communicated
 - Neutral information, advices, instructions or rules?

Information flow

- Purpose and criterias – production goals
 - Product specifications
 - Goals concerning production volume
 - Process optimization
 - Constraints for production
 - Safety
 - Work environment issues
- Changes in production goals
- Information – situation awareness
Actors competence I

- Cognitive aspects
 - All forms of knowledge about the completion of every day work tasks, explicit as well as implicit, regardless of context, situation or person
- Meta-cognitive aspects
 - The culture of knowledge that is developed in any specific work place, for example how to deal with a specific work task

Design of interfaces

- Guide-lines from the socio-technical analysis
 - Conceptual content – functional structure
 - Delimitation of the interface
 - Transformation of relative values into causal object structures – virtual context
 - The form of the representations
 - Knowledge-based reasoning
 - Rule-based judgments
 - Skill-based perceptual-motor actions

TMI, Harrisburg
Gottröra

M/S Sleipner

Sleipner before….

….and after

Tjernobyl

Tjernobyl

36 april 1986
X2000-incident

The shot-down of an Iranian passenger plane

Organizations & Safety cultures