Humans in Complex Systems
Normative and descriptive analyses
Anders Jansson

Conclusions chpt. 1
- Socio-technical systems
 - Different groups of users
 - Deficiencies in goal-related effectiveness
 - Overconfidence in the technological development
- Vicente’s message:
 - More focus on goal-related effectiveness!
 - The operator is an expert!
 - Self-control and autonomy are important!
 - Design for unexpected events!

The CWA-framework

<table>
<thead>
<tr>
<th>Behavior-shaping constraints</th>
<th>CWA-phase</th>
<th>Chapter in the book</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Work domain design</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>B. Control tasks and sub-tasks</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>C. Strategies</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>D. Social organization and cooperation</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>E. Domain-specific knowledge and expertise</td>
<td>5</td>
<td>11</td>
</tr>
</tbody>
</table>
Conclusions chpt. 2

- Socio-technical analyses
 - The traditional, cognitive perspective
 - The cognitive characteristics are the main issue!
 - The new, ecological perspective
 - The contextual contingencies first!
- Vicente's strategy:
 1. The contextual characteristics should be dealt with first
 2. Also considering cognitive characteristics

Inferences

- Operators and users have to make conclusions and decisions from inferences
- Three contextual characteristics that are particularly difficult to handle:
 - Complexity
 - Dynamics
 - Non-transparency

A complex context
A dynamic context

A non-transparent context

Task analyses

- Normative models
 - How must the system interaction work?
 - What procedures and rules do we need?

- Descriptive models
 - How does the interaction work in practice?
 - How can technology be adapted to the current use?

- Formative models
 - What constraints do we need to identify, in order to make the system interaction work?
 - What information must always be present?
Normative models
- The purpose is clear instructions
 - Prescribing through rules and regulations how and what an operator must do in different moments
 - Uncertainties are handled through assumptions
 - One disadvantage is that such analyses don't comply with reality
 - Humans cannot be controlled in detail

Descriptive models
- The purpose is to give an as correct picture of the work situation as possible
 - What is actually going on
 - Unique circumstances are seen as extra valuable information
 - One disadvantage is that such analyses do not reveal enough for new design
 - Resistance toward changes is common

Formative models
- The purpose is to define the constraints to consider in design cases
 - They describe structures in the context, as well as cognitive characteristics in humans, that have to be considered
 - Contexts are categorized and analyzed in terms of behavior-shaping constraints
Normative analyses 1

- Delimitation: Unexpected events cannot be anticipated
- Must always be used as a complement to other analyses
- Two different types of analyses
 - In terms of constraints
 - In terms of instructions

Normative analyses 2

- Three different levels
 - Input – Output Analyses
 - Belongs to the constraint analyses
 - Flow diagrams
 - Belongs to the instruction-based analyses
 - Flow diagrams with time stamps
 - Belongs to the instruction-based analyses

Normative analyses 3

- Important differences
 - Constraint-based models
 - The degree of freedom for the operator is greater in terms of self-control
 - Better preparations for adaptation
 - Instruction-based models
 - Detailed instructions in terms of procedures to be followed
 - The ability to handle deviations and rare problems is limited
Normative analyses 4

- More advantages with constraint-based normative models
- More opportunities for variations, which is a pre-condition for learning
- A greater independence relative to the equipment (Vicente uses the term device-independence)

Conclusions

- Instructions and procedures are possible in closed-loop systems where procedures and events are possible to anticipate and predict
- Most socio-technical systems are open-loop systems, which demands learning how to manage unexpected situations and events
- Constraint-based normative analysis models give better opportunities for adaptation and a higher degree of freedom for the operators

Train driver context
A new ATP-interface

Analogy: Map as an example

- Direction
 - Knowledge in terms of procedures
 - No problem as long as one is on the right route
 - Problems occur when you deviate from the tour

- Map
 - Knowledge in terms of overview (model)
 - Detailed instructions is missing, but the information can be acquired
 - If you get lost, you can always return to the map

Descriptive analyses 1

- Most sufficient as instruments for documenting dynamic actions and domain-specific use-cases
- Has evolved as an reaction to the normative models
- Delimitation: Not too much of support when new technology is put into practice
Descriptive analyses 2

- Examples
 - Socio-anthropological studies of the use of copy-machines showed that menus and procedures were not used at all
 - Field-studies within decision-making showed that pilots and operators did not act according to classical decision theory – they did not choose among alternatives

Descriptive analyses 3

- More examples
 - Studies within activity theory showed that the use of computers in workplaces is affected by social and cultural factors – a critique against traditional HCI
 - Studies within distributed decision making and cognition show the lonely problem-solver is a myth. Group activities with a high degree of communication are important

Descriptive analyses 4

- Two main contributions:
 - Work-descriptions from representative and real contexts are valuable contributions when it comes to understand the work practices
 - Conclusions are general across several application domains
Common things

- Context-contingent variation is important for the learning process
- Work has often a stronger social profile than anticipated by designers
- Longer periods of analytical problem solving is not very common
- History and culture affect work
- Operators develop efficient strategies and methods in order to avoid cumbersome cognitive strain

Disadvantages

- Still, Vicente claims that descriptive analyses is not enough
 - There is always new ways to explore and change the way you work in order to develop work in a more efficient way
 - Descriptive analyses will not reveal these potentials
 - Current practice is stuck with current technology!

Conclusions

- Descriptive analyses contribute a lot in terms of realistic conceptions about the role of the work context
- The problem is that the intrinsic constraints for the work to be done cannot be revealed until you get rid of current technology
Prototypes / Iterations

Main idea:

- Using prototypes for fast and efficient evaluation of design concepts through an iterative design process
- A good method for successive adaptation of current work practice to new a technology/platform
Prototype: ATP-interface

Scenario-based design

Main idea:
- Using scenario for fast and efficient evaluation of design concepts through an iterative design process
- A good method for visualizing how work practice can be developed

Prototypes and scenarios

Vicente’s critic:
- Two serious delimitations:
 - The connection to the technology that is used to build the prototypes, or to visualize the scenarios, is too strong (device-dependence)
 - Too limited possibilities to test representative tasks. Difficulties in realizing what is most important
Conclusions

- Prototypes and scenarios are data-driven (bottom-up) activities, building upon induction, which means limited knowledge.
- What is needed is a conceptual strategy (top-down) that is independent from present work practice and technology.

Consequences for CWA

- Five dimensions of analyses
 - A work domain analysis in order to handle deviations and unexpected events
 - A constraint-based task analysis in order to achieve sub-goals in a flexible way
 - An analysis of efficient strategies
 - An analysis of organizational and social factors
 - An analysis of domain-specific knowledge and expertise