Association Rules & Frequent Itemsets

All you ever wanted to know about diapers, beers and their correlation!

The Market-Basket Problem

Given a database of transactions
where each transaction is a collection of items
(purchased by a customer in a visit)
find all rules that correlate the presence of one set of items with that of another set of items
Example: 30% of all transactions that contain diapers also contain beers; 5% of all transactions contain these items
- 30%: confidence of the rule
- 5%: support of the rule
We are interested in finding all rules, rather than verifying that a particular rule holds

What is Association Rule Mining?

- Finding frequent patterns, associations, correlations, or causal structures among sets of items or objects in transaction databases, relational databases, and other information repositories.
- Rule form: "Body ⊃ Head [support, confidence]"

Examples:
- \(\text{buy}(x, \text{"diapers") } \Rightarrow \text{buy}(x, \text{"beers") } [0.5\%, 60\%]\)
- \(\text{program}(x, \text{"TF") } \& \text{takes}(x, \text{"DM") } \Rightarrow \text{grade}(x, \text{"5") } [1\%, 75\%]\)

Market-Basket: Applications

- \(\ast \Rightarrow \text{Maintenance Agreement}\)
 - What should a store do to boost Maintenance Agreement sales?
- \(\text{Home Electronics } \Rightarrow \ast\)
 - What other products should a store stock up?
- Attached mailing in direct marketing
- Detecting "ping-pong"-ing of patients, faulty "collisions"

Rule Measures: Support and Confidence

Find all the rules \(X \& Y \Rightarrow Z\) with minimum confidence and support
- support, \(s\), probability that a transaction contains \((X \& Y \& Z)\)
- confidence, \(c\), conditional probability that a transaction having \((X \& Y)\) also contains \(Z\)

Transaction ID	Items Bought
2000 | A, B, C
1000 | A, C
4000 | A, D
5000 | B, E, F

Let minimum support 50%, and minimum confidence 50%.
We have:
- \(A \Rightarrow C\) (50%, 66.6%)
- \(C \Rightarrow A\) (90%, 100%)
Mining Association Rules—An Example

<table>
<thead>
<tr>
<th>Transaction ID</th>
<th>Items Bought</th>
<th>Min. support 50%</th>
<th>Min. confidence 50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>A, B, C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>A, C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td>A, D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5000</td>
<td>B, E, F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Frequent Itemset Support
- {A}: 75%
- {B}: 50%
- {C}: 50%
- {A, C}: 50%

For rule A → C:
- Support: \(\text{support}(\{A \Rightarrow C\}) = 50\% \)
- Confidence: \(\frac{\text{support}(\{A \Rightarrow C\})}{\text{support}(\{A\})} = 66.6\% \)

The Apriori principle: (large itemset property)

Any subset of a frequent itemset must also be frequent.

Applications of Market-Basket Analysis

- Supermarkets
 - Placement
 - Advertising
 - Sales
 - Coupons
- Many applications outside market basket data analysis
 - Prediction (telecom switch failure)
 - Web usage mining
- Many different types of association rules
 - Temporal
 - Spatial
 - Causal

Aspect of Market Basket Mining

- What is interesting?
- How do you make it run fast?
- Performance measured in
 - Number of database scans
 - Number of itemsets that must be counted

What is Interesting? (first try)

Set of items: \(I = \{ I_1, I_2, ..., I_m \} \)
Transactions: \(D = \{ t_1, t_2, ..., t_n \} \), \(t_j \subseteq I \)

Itemset \(L \) : set of items \(\{ I_{i_1}, I_{i_2}, ..., I_{i_k} \} \subseteq I \)

Support(L) : fraction of baskets that contain \(L \)

Large (Frequent) itemset: Itemset whose number of occurrences is above a threshold.

Association Rules Example

<table>
<thead>
<tr>
<th>Transaction</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>Bread, Jelly, Peanut Butter</td>
</tr>
<tr>
<td>(t_2)</td>
<td>Bread, Peanut Butter</td>
</tr>
<tr>
<td>(t_3)</td>
<td>Bread, Milk, Peanut Butter</td>
</tr>
<tr>
<td>(t_4)</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>(t_5)</td>
<td>Beer, Milk</td>
</tr>
</tbody>
</table>

\(I = \{ \text{Beer, Bread, Jelly, Milk, Peanut Butter} \} \)

Support of {Bread, Peanut Butter} is 60%.

Association Rule Definitions

- **Association Rule (AR)**: implication \(X \Rightarrow Y \)
 where \(X, Y \subseteq I \) and \(X \cap Y = \emptyset \)
- **Support (s) of AR X \Rightarrow Y**: Percentage of transactions that contain \(X \cup Y \)
- **Confidence (c) of AR X \Rightarrow Y**: Ratio of number of transactions that contain \(X \cup Y \) to the number that contain \(X \)
Association Rules Example (cont’d)

<table>
<thead>
<tr>
<th>X ⇒ Y</th>
<th>s</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bread ⇒ PeanutButter</td>
<td>60%</td>
<td>75%</td>
</tr>
<tr>
<td>PeanutButter ⇒ Bread</td>
<td>60%</td>
<td>100%</td>
</tr>
<tr>
<td>Beer ⇒ Bread</td>
<td>20%</td>
<td>50%</td>
</tr>
<tr>
<td>PeanutButter ⇒ Jelly</td>
<td>20%</td>
<td>33.3%</td>
</tr>
<tr>
<td>Jelly ⇒ PeanutButter</td>
<td>20%</td>
<td>100%</td>
</tr>
<tr>
<td>Jelly ⇒ Milk</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Association Rule Problem

Given a set of items I = \{I₁, I₂, ..., Iₙ\} and a database of transactions D = \{t₁, t₂, ..., tₙ\} where \(t_i = \{I_{x₁}, I_{x₂}, ..., I_{xₙ}\}\) and \(I_k \in I\), the Association Rule Problem is to identify all association rules \(X \Rightarrow Y\) where \(X, Y \subseteq I\) with a minimum support and confidence.

NOTE: Support of \(X \Rightarrow Y\) is same as support of \(X \cup Y\).

Finding Association Rules: A two step process

1. Find large (frequent) itemsets.
2. Generate rules from frequent itemsets.

Large Itemset: A Downwards-Closed Property

Apriori Example

<table>
<thead>
<tr>
<th>Pass</th>
<th>Candidates</th>
<th>Large Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{Beer}, {Bread}, {Jelly}, {Milk}, {PeanutButter}</td>
<td>{Beer}, {Bread}, {Milk}, {PeanutButter}</td>
</tr>
<tr>
<td>2</td>
<td>{Beer, Bread}, {Beer, Milk}, {Beer, PeanutButter}, {Bread, Milk}, {Bread, PeanutButter}, {Milk, PeanutButter}</td>
<td>{Bread, PeanutButter}</td>
</tr>
</tbody>
</table>

How to find Itemsets with High Support?

- Find all itemsets with support > s

1-itemset: itemset with 1 item ...

k-itemset: itemset with k items

large itemset: itemset with support > s
candidate itemset: itemset that may have support > s
Apriori Algorithm

- start with all 1-itemsets
- go through data and count their support and find all "large" 1-itemsets
- combine them to form "candidate" 2-itemsets
- go through data and count their support and find all "large" 2-itemsets
- combine them to form "candidate" 3-itemsets...

General Strategy

Step I: Find all itemsets with \textit{minimum support (mainsup)}

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,3)</td>
<td>0.25</td>
</tr>
<tr>
<td>(1,2,3)</td>
<td>0.5</td>
</tr>
<tr>
<td>(2,3,5)</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Step II: Generate rules from \textit{mainsup}ated itemsets

<table>
<thead>
<tr>
<th>Support</th>
<th>Confidence</th>
<th>Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>66%</td>
<td>(1)</td>
</tr>
<tr>
<td>0.75</td>
<td>100%</td>
<td>(2)</td>
</tr>
</tbody>
</table>

Algorithm to Guess Itemsets

- Naïve way:
 - Extend all itemsets with all possible items
- More sophisticated:
 - Join \(L_k \) with itself, adding only a single, final item
 e.g.: \((1 \ 2 \ 3), (1 \ 2 \ 4), (1 \ 3 \ 4), (2 \ 3 \ 4) \) produces \((1 \ 2 \ 3 \ 4) \) and \((1 \ 3 \ 4 \ 5) \)
 - Remove itemsets with an unsupported subset
 e.g.: \((1 \ 3 \ 4 \ 5) \) has an unsupported subset \((1 \ 4 \ 5) \)
 if \(\text{mainsup} = 50\% \)
 - Use the database to further refine \(C_k \)

Run Time

- \(k \) passes over data where \(k \) is the size of the largest candidate itemset
- Memory chunking algorithm \(\Rightarrow 2 \) passes over data on disk but multiple in memory

Toivonen 1996 gives a statistical technique which requires \(1 + e \) passes (but more memory)

Brin 1997 - Dynamic Itemset Counting \(\Rightarrow 1 + e \) passes (less memory)

Step I: Finding MinSup Itemsets

- **Key fact:** Adding items to an itemset never increases its support
- **General Strategy:** Proceed inductively on itemset size
- **Apriori Algorithm:**
 1. Base case: Begin with all minsup itemsets of size 1 \(L_1 \)
 2. Without peeking at the DB, generate candidate itemsets of size \(k \) \((C_k) \) from \(L_{k-1} \)
 3. Remove candidate itemsets that contain unsupported subsets
 4. Further refine \(C_k \) using the database to produce \(L_k \)

Mining Frequent Itemsets: the Key Step

- Find the \textit{frequent itemsets} the sets of items that have minimum support
 - Any subset of a frequent itemset must also be a frequent itemset
 - i.e., if \(AB \) is a frequent itemset, both \(A \) and \(B \) should be a frequent itemset
 - Iteratively find frequent itemsets with cardinality from 1 to \(k \) \((k\text{-itemset}) \)
- Use the frequent itemsets to generate association rules.
The Apriori Algorithm

- **Join Step:** \(C_k \) is generated by joining \(L_k \) with itself.
- **Prune Step:** Any \((k-1)\)-itemset that is not frequent cannot be a subset of a frequent \(k \)-itemset.

Pseudo-code:

\(C_k \) Candidate itemset of size \(k \\
L_k \) frequent itemset of size \(k \\
for (k+1 \leq l \leq \log_2 \text{minsup}) \) do begin

\(C_{k+1} \) candidates generated from \(L_k \\
for each transaction \(t \) in database do

increment the count of all candidates in \(C_{k+1} \)

that are contained in \(t \)

\(L_{k+1} \) candidates in \(C_k \) with min support
end

return \(\cup_b L_b \)

Apriori: Formulation from Original Paper

1. \(L_1 = \{ \text{large 1-itemsets} \} \)
2. for \(k = 2; L_{k-1} \neq \emptyset; k++ \) do begin
3. \(C_k = \text{aprior-gen}(L_{k-1}, \text{\textit{sup}}) \) // New candidates
4. forall transactions \(t \in D \) do begin
5. \(C_t = \text{subset}(C_k, t) \) // Candidates contained in \(t \)
6. forall candidates \(c \in C_t \) do
7. \(c\cdot\text{count}++ \)
8. end
9. \(L_k = \{ c \in C_k | c\cdot\text{count} \geq \text{minsup} \} \)
10. end
11. Answer = \(\bigcup_k L_k \)

A-Priori Algorithm Example (\(s = 50\% \))

Database D

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1 3 4</td>
</tr>
<tr>
<td>200</td>
<td>2 3 5</td>
</tr>
<tr>
<td>300</td>
<td>1 2 3 5</td>
</tr>
<tr>
<td>400</td>
<td>2 5</td>
</tr>
</tbody>
</table>

\(L_1 \)

<table>
<thead>
<tr>
<th>Itemset</th>
<th>sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1}</td>
<td>2</td>
</tr>
<tr>
<td>{2}</td>
<td>3</td>
</tr>
<tr>
<td>{3}</td>
<td>3</td>
</tr>
<tr>
<td>{4}</td>
<td>1</td>
</tr>
<tr>
<td>{5}</td>
<td>3</td>
</tr>
</tbody>
</table>

Scan D

\(L_2 \)

<table>
<thead>
<tr>
<th>Itemset</th>
<th>sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1,2}</td>
<td>1</td>
</tr>
<tr>
<td>{1,3}</td>
<td>2</td>
</tr>
<tr>
<td>{1,5}</td>
<td>1</td>
</tr>
<tr>
<td>{2,3}</td>
<td>2</td>
</tr>
<tr>
<td>{2,5}</td>
<td>3</td>
</tr>
<tr>
<td>{3,5}</td>
<td>2</td>
</tr>
</tbody>
</table>

\(C_2 \)

<table>
<thead>
<tr>
<th>Itemset</th>
<th>sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1,2}</td>
<td>1</td>
</tr>
<tr>
<td>{1,3}</td>
<td>2</td>
</tr>
<tr>
<td>{1,5}</td>
<td>1</td>
</tr>
<tr>
<td>{2,3}</td>
<td>2</td>
</tr>
<tr>
<td>{2,5}</td>
<td>3</td>
</tr>
<tr>
<td>{3,5}</td>
<td>2</td>
</tr>
</tbody>
</table>

Scan D

\(L_3 \)

<table>
<thead>
<tr>
<th>Itemset</th>
<th>sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1,2,3}</td>
<td>1</td>
</tr>
</tbody>
</table>

\(C_3 \)

<table>
<thead>
<tr>
<th>Itemset</th>
<th>sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>{2,3,5}</td>
<td>2</td>
</tr>
</tbody>
</table>

Apriori: How to Generate Candidates?

STEP 1: Self-join operation

- insert into \(C_k \)
- select \(p, \text{item}_1, \text{item}_2, \ldots, \text{item}_{k-1}, q, \text{item}_{k-1} \)
- from \(L_{k-1} \) \& \(L_{k-1} \)
- where \(p, \text{item}_1 = q, \text{item}_2 = q, \text{item}_{k-1} = q, \text{item}_{k-1} < q, \text{item}_{k-1} \)

STEP 2: Subset filtering

- forall itemsets \(c \in C_k \) do
- forall \((k-1)\)-subsets \(s \) of \(c \) do
- if \(s \notin L_{k-1} \) then
- delete \(c \) from \(C_k \)

Example of Generating Candidate Itemsets

- \(L_2 = \{ abc, abd, acd, ace, bcd\} \)
- Self-joining: \(L_2 \cdot L_2 \)
 - \(abcd \) from \(abc \) and \(abd \)
 - \(acde \) from \(acd \) and \(ace \)

- Pruning based on the \(\alpha \)-priori principle:
 - \(acde \) is removed because \(acde \) is not in \(L_2 \)
- \(C_2 = \{ abcd \} \)
Methods to Improve Apriori’s Efficiency

- Hash-based itemset counting: A k-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent.
- Transaction reduction: A transaction that does not contain any frequent k-itemsets is useless in subsequent scans.
- Partitioning: Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB.
- Sampling: mining on a subset of given data - lower support threshold - a method to determine the completeness
- Dynamic itemset counting: add new candidate itemsets only when all of their subsets are estimated to be frequent.

Is Apriori Fast Enough? — Performance Bottlenecks

- The core of the Apriori algorithm:
 - Use frequent (k-1) itemsets to generate candidate frequent k-itemsets
 - Use database scan and pattern matching to collect counts for the candidate itemsets
- The bottleneck of Apriori candidate generation
 - Huge candidate sets:
 - 10^4 frequent 1-itemsets will generate 10^7 candidate 2-itemsets
 - To discover a frequent pattern of size 100, e.g., (a_1, a_2, ..., a_100), one needs to generate 2^100 = 10^30 candidate sets.
 - Multiple scans of database:
 - Needs (n+1) scans, where n is the length of the longest pattern.

Step II: Generating Rules

Key fact:

Moving items from the antecedent to the consequent never changes support and never increases confidence.

Algorithm

- For each itemset IS with minsup:
 - Find all minconf rules with a single consequent of the form (IS - L_J ⇒ L_i)
 - Guess candidate consequents Cl by appending items from IS - L_{k-1} to L_{k-2}
 - Verify confidence of each rule IS - Cl ⇒ C_j using known itemset support values

Algorithm to Generate Association Rules

Input:
\[D \] //Database of transactions
\[I \] //Items
\[L \] //Large itemsets
\[s \] //Support
\[\alpha \] //Confidence

Output:
\[R \] //Association Rules satisfying \(s \) and \(\alpha \)

ARGen Algorithm:

1. \(R \leftarrow \emptyset \)
2. for each \(l \in L \) do
 for each \(x \in I \) such that \(x \neq \emptyset \) and \(x \neq l \) do
 if \(\text{support}(x) \geq s \) then
 \(R \leftarrow R \cup \{ x \colon (l - x) \} \)

Questions

- How are rules ranked?
- Do the minsup and minconf find interesting rules?
- Do they omit any interesting rules?
- What about maximum support?
- How well will this approach work for other problems (e.g., clustering, classification)?
But what is really interesting?

- \(A \implies B \)
- \(\text{Support} = P(AB) \)
- \(\text{Confidence} = P(B|A) \)
- \(\text{Interest} = P(AB)/P(A)P(B) \)
- \(\text{Implication Strength} = P(A)P(\neg B)/P(\neg A\neg B) \)

Interestingness Measurements

Objective measures
- Two popular measurements:
 - \(\text{support} \) and \(\text{confidence} \)

Subjective measures (Silberschatz & Tuzhilin, KDD95)
- A rule (pattern) is interesting if
 - it is unexpected(surprising to the user); and/or
 - actionable (the user can do something with it)

Criticism to Support and Confidence

Example 1: (Aggarwal & Yu, paper at PODS98)

- Among 10000 students
 - 6000 play basketball
 - 7500 eat cereal
 - 4000 both play basketball and eat cereal
- play basketball \(\implies \) eat cereal (40%, 66.7%) is misleading because the overall percentage of students eating cereal is 75% which is higher than 66.7%.
- play basketball \(\implies \) not eat cereal (20%, 33.3%) is far more accurate, although with lower support and confidence

<table>
<thead>
<tr>
<th></th>
<th>basketball</th>
<th>not basketball</th>
<th>sum(col.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cereal</td>
<td>4000</td>
<td>3500</td>
<td>7500</td>
</tr>
<tr>
<td>not cereal</td>
<td>2000</td>
<td>500</td>
<td>2500</td>
</tr>
<tr>
<td>sum(rows)</td>
<td>6000</td>
<td>4000</td>
<td>10000</td>
</tr>
</tbody>
</table>

Criticism to Support and Confidence (Cont.)

Example 2:

- \(X \) and \(Y \) positively correlated,
- \(X \) and \(Z \) negatively related
- support and confidence of \(X \implies Z \) dominates

We need a measure of dependent or correlated events

\[
corr_{A,B} = \frac{P(A \cup B)}{P(A)P(B)}
\]

- \(P(B|A)/P(B) \) is also called the lift of rule \(A \implies B \)

Other Interestingness Measures: Interest

- Interest (correlation, lift) \(\frac{P(A \cup B)}{P(A)P(B)} \)
 - taking both \(P(A) \) and \(P(B) \) in consideration
 - \(P(A \cup B) = P(B)^{*}P(A) \), if \(A \) and \(B \) are independent events
 - \(A \) and \(B \) negatively correlated, if the value is less than 1;
 - otherwise \(A \) and \(B \) positively correlated

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Support</th>
<th>Interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X)</td>
<td>60%</td>
<td>2</td>
</tr>
<tr>
<td>(Y)</td>
<td>37.5%</td>
<td>0.9</td>
</tr>
<tr>
<td>(Z)</td>
<td>12.5%</td>
<td>0.57</td>
</tr>
</tbody>
</table>

But what is really really interesting?

- Causality
- Surprise