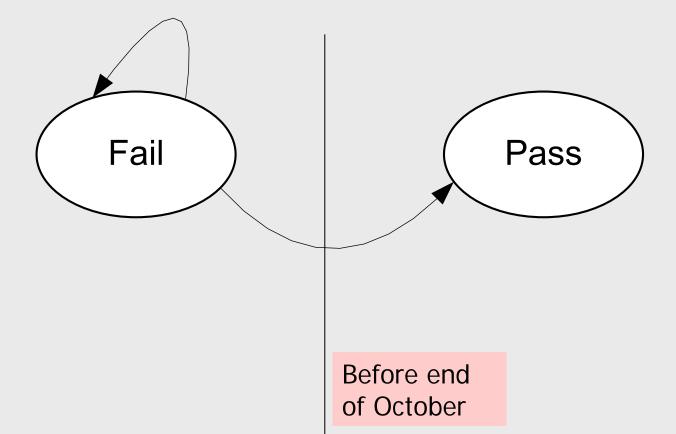
Data Mining Assignment 1

Oral exam

Two parts:


- 1. Validation
 - Your solution is validated using a script
 - If your solution does not work
 - → the examination ends immediately ("fail" grade is given)
 - → you may re-do the examination later

2. Discussion

- Prepare answers to the written questions
- The instructor will ask additional questions
 - about your solution
 - about the method
- All group members must be able to answer
 - Group members can get different grades on the same assignment

Grades

What you need to do

20, 22 Sep

- Sign up for labs and examination <
 - Groups of 2 4 students
 - Forms are on the board outside 1346
- Implement a solution
 - Deadline: Submit by e-mail no later than 24h before your examination
 - 1: thanh.truong@it.uu.se. Subject: DM1-A1 Solution
 - 2, 3: andrej.andrejev@it.uu.se
- Prepare answers to the questions
- Prepare for the discussion
 - Understand the theory

2010-09-13 Erik Zeitler 4

28 Sep

Assignment 1 in a nutshell

- You will get
 - 163 data points with known class belonging
 - 30 data points with unknown class belonging
 - A kNN implementation
- Improve classifier performance
 - Find the best k
 - Normalization (max-min, Gaussian)
 - Metrics (Minkowski r = ?)
 - Vote weighting
 - Optional: Attribute weighting
- Using your parameter settings, classify the 30 data points

2010-09-13 Erik Zeitler 5

Things to consider: Know your data!

1. Normalize ⊂ Pre-process

- What is the range of each attribute?
- Is one attribute more important than another?
 - If so, what should we do?
 - If not, should we do anything else?
- You can assume: no missing points, no noise.

2. Select training + testing data

- Is the data sorted?
 - Does it matter? If so, is this good or bad?
- Are there any alternatives to leave-one-out cross validation?

3. Choose k

How do you know if the value of k is good?

Know your data!

- 4. How many points of each class are there?
 - Should this observation affect the choice of k?
- 5. Choose distance measure
 - What distance measure is suitable? Why?
 - Euclid, Minkowski, and maxnorm are available in Amos II.
 - You can implement other distance measures, similarity measures, etc...
- 6. Classify unknown data
 - Should the unknown data be normalized? How?
 - Which data set should be used to classify the unknown data?