Assignment 2: k-Means and DBSCAN

Erik Zeitler Uppsala Database Laboratory

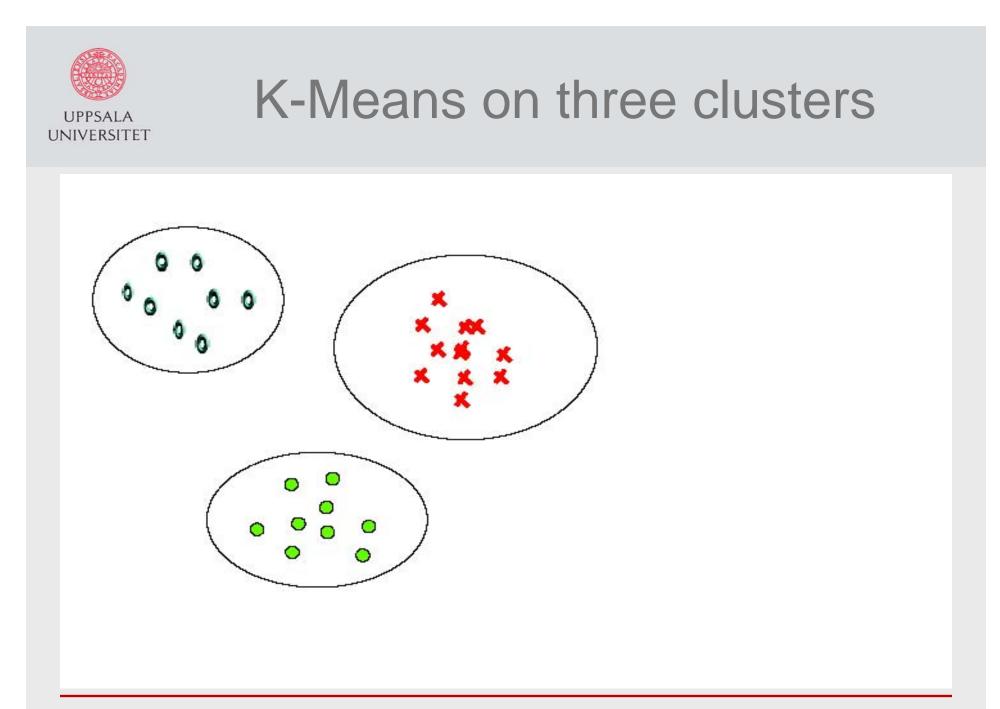
Assignment 2 in a nutshell

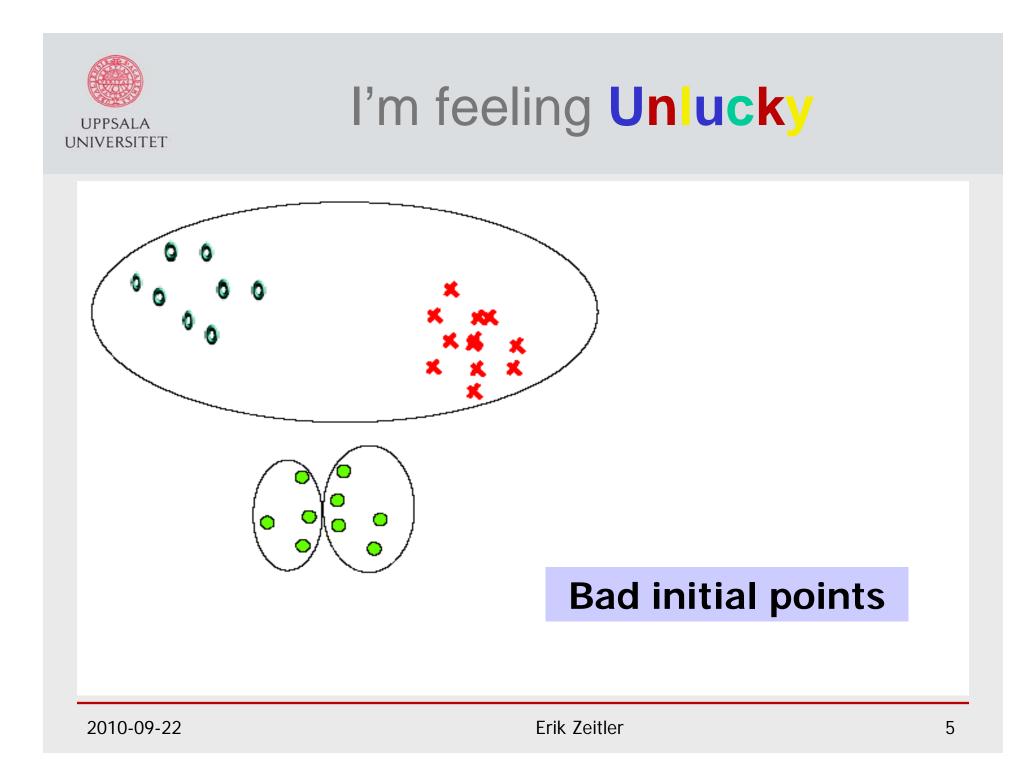
- You will get
 - Two different data sets: data/patterns.nt, data/patterns2.nt
 - A k-means implementation
 - A DBSCAN implementation
- Study the data sets (visual inspection, queries etc)
 - How are they different?
- Find the best clustering on each data set, using both k-means and DBSCAN
 - k-means:
 - find and submit *k* and initial centroids
 - answer the questions
 - DBSCAN:
 - find and submit ϵ and *MinPts*
 - answer the questions

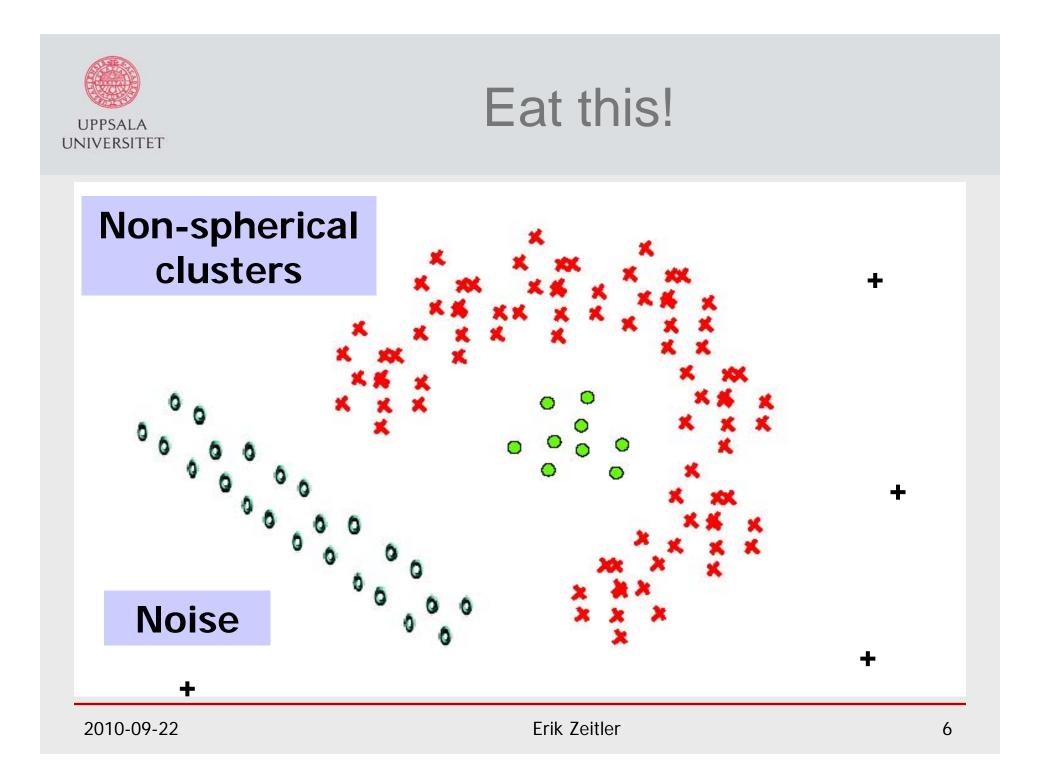
- Input
 - *M* (set of points)
 - *k* (number of clusters)
- Output
 - μ_1, \dots, μ_k (set of *k* cluster centroids)
- k-Means is clustering M points into k clusters, by trying to minimize the squared error function

$$\sum_{i=1}^{k} \sum_{x_j \in S_i} \left(x_j - \mu_i \right)^2$$

 μ_i is centroid of cluster S_i containing points $\{x_i\}$







Running k-Means

- How to choose k
 - study the data visually (pca + plot)
 - run k-Means for different k
 - compute SSE for each k
 - why not make a k-SSE-plot!
- How to choose initial centroids
 - select randomly among the data points
 - generate completely randomly
 - can we do something smarter?
- Submit your choice of initial centroids

Questions

- How are the data sets different?
- Euclidean distance results in spherical clusters
 - What cluster shape does the Manhattan distance give?
 - Think of other distance measures too. What cluster shapes will those yield?
- Assuming that K-means converges in Literations, with M points and X features for each point
 - give an approximation of the complexity expressed in K, I, M, and X
- Would normalization improve clustering quality?
 - Why? Why not?

DBSCAN

i = 0find the set of core points CP in M do take a point p from CP find the set of points P which are density reachable to p if $P = \{\}$ $M = M \setminus \{p\}$ HOW? else Let's call this $C_i = P$ function **dr(p)** i=i+1 P $M = M \setminus P$ end while $M \neq \{\}$

2010-09-22

Implement dr

create function dr(p) ->	P
$C = \{p\}$ $P = \{p\}$	
do	
remove a point p' from find all points X that	
$C = C \cup (X \setminus (P \cap X))$	<pre>% add newly discovered % points to C</pre>
$\mathbf{P} = \mathbf{P} \cup \mathbf{X}$	
while $C \neq \{\}$	
result P	

Running DBSCAN on you

- Are you a core point?
 - do you have at least *MinPts* neighbors within ε ?
- For each core point
 - do you have another core point within ε?
 yes → merge
 (no → you are a separate cluster)

Running DBSCAN

- Guess ε using a k-dist plot
- Experiment with different ε and Minpts
- For each [ε, Minpts]:
 - Run DBSCAN
 - Count number of non-noise points: count(select distinct ddr(datapoints(), #'datapoints', :eps, :minpts));
 - Count number of core points
 - Plot the core points
 - Plot the result of DBSCAN

Questions

- For which points are density reachable symmetric, i.e. for which p, q: *dr(p, q)* and *dr(q, p)*?
- Express using only core objects and ddr, which objects will belong to a cluster