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Announcements  



 
Updated material for assignment 3 on the lab course home 
page.



 
Posted sign-up sheets for labs and examinations for 
assignment 3 outside P1321. 



 
Please make sure you sign up for a slot. 
•

 

Limited number of slot  Sign up early!
•

 

Tight assignment deadline?  Attend more labs!
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Outline



 
Association rules and Apriori-based frequent itemset 
mining



 
Pattern growth by database projections 



 
Frequent itemset mining -

 
elements of a DB-projection 

based implementation using Amos II


 
The assignment 



Association Rules and Apriori-Based 
Frequent Itemset Mining
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Association Rules –
 

The Basic 
Idea



 
By examining transactions, or shop carts, we can find 
which items are commonly purchased together. This 
knowledge can be used in advertising or in goods 
placement in stores.



 
Association rules have the general form:

I1
 

 I2
where I1

 

and I2
 

are disjoint sets of items that for example 
can be purchased in a store.



 
The rule should be read as:
Given that someone has bought the items in the set I1

 

they 
are likely to also buy the items in the set I2 .
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Frequent Itemsets



 
Transaction: set of items purchased together by one 
customer



 
Transaction database D: set of transactions 



 
Itemset: set of items



 
Support count of an itemset

 
i: number of transactions in D 

that contain i, i.e., t in D s.t. i is a subset of t. 


 
Support of an itemset

 
i: support count of i relative to |D|, 

i.e., the number of transactions in D
Number of transactions containing I

Total number of transactions



 
An itemset i is frequent itemset if suppi ≥

 
min_supp.

SuppI =
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Finding the Frequent Itemsets



 
The Brute Force Approach
Just take all items and form all possible combinations of 
them and count away. Unfortunately, this will take some 
time...
Given n items, how many possible itemsets

 
are there?



 
A better approach: The Apriori Algorithm
Basic idea:

An itemset can only be a frequent itemset if all its 
subsets are frequent itemsets
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Example



 
Assume that we have a transaction database with 100 
transactions and we have the items a, b and c. Assume 
that the minimum support is set to 0.60, which gives us 
a minimum support count of 60.



 
Since the support count of {b} is below the minimum 
support count no itemset containing b can be a 
frequent itemset. This means that when we look for 
itemsets

 
of size 2 we do not have to look for any sets 

containing b, which in turn leaves us with the only 
possible candidate {a,c}.

Itemset Count
{a} 65
{b} 50
{c} 80
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The Apriori
 

Algorithm

A general outline of the algorithm is the following:

1. Count all itemsets of size K.
2. Prune the unsupported itemsets of size K.
3. Generate new candidates of size K+1.
4. Prune the new candidates based on 

supported subsets.
5. Repeat from 1 until no more candidates or 

frequent itemsets are found.
6. When all supported itemsets have been 

found, generate the rules.
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Candidate Generation



 
Assume that we have the frequent itemsets

 
of size 2

{a,b}, {b,c}, {a,c} and {c,d}



 
From these sets we can form the candidates of size 3

{a,b,c}, {a,c,d} and {b,c,d}



 
But... Why not {a,b,d}?



 
Answer:
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Candidate Pruning



 
Again, assume that we have the frequent 2-itemsets

{a,b}, {b,c}, {a,c} and {c,d}



 
And the 3-candidates

{a,b,c}, {a,c,d} and {b,c,d}



 
Can all of these 3-candidates be frequent itemsets?



 
Answer:
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Find Out if the Itemset is Frequent



 
When we have found our final candidates we can simply 
count all occurrences of the itemset in the transaction 
database and then remove those that have too low support 
count.



 
If at least one of the candidates have enough support 
count we loop again until we can find no more candidates 
or frequent itemsets.
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Rule Metrics



 
When we have our frequent itemsets

 
we want to form 

association rules from them. As we said earlier the 
association rule has the form

I1  I2


 
The support, Supptot , of the rule is the support of the 
itemset Itot where

Itot = I1 U I2


 
The confidence, C, of the rule is

Supptot

SuppI1
C =
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Rule Metrics (cont.)



 
How can we interpret the support and the confidence of a 
rule?
•

 

The support is how common the rule is in the transaction database.
•

 

The confidence is how often the left hand side of the rule is 
associated with the right hand side.



 
In what situations can we have a rule with:
•

 

High support and low confidence?
•

 

Low support and high confidence?
•

 

High support and high confidence?



Pattern Growth by Database Projections
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The Frequent Pattern Growth 
Approach to FIM



 
The bottleneck of Apriori

 
is candidate generation and 

testing. High cost of mining long itemsets! 


 
Idea: Instead of bottom up, in a top-down fashion extend 
frequent prefix by adding a single locally frequent item to it.



 
Question: What does “locally” mean?



 
Answer: To find the frequent itemsets

 
that contain an item 

i, the only transactions that need to be considered are 
transactions that contain i. 



 
Definition: A frequent item i-related projected transaction 
table, denoted as PT_i, contains all frequent items (larger 
than i) in the transactions that contain i.



 
Let’s look at an example!   
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Example

Transactions

Relational 
format

Frequent 
items

Filtered
transactions

Items co-occuring
with item 1  

Frequent
items

Projected
table on item 1

Items co-occuring
with item 3 (and 1)  

Frequent
items

Projected
table on 
item 3 (and 1)
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Frequent itemset tree 

Discover all frequent itemsets
 

by recursively filtering and 
projecting transactions in a depth-first-search manner until 
there are frequent items in the filtered/projected table.   

depth-fir
st



Frequent Itemset Mining –
 Elements of a DB-Projection Based 

Implementation 
Using Amos II / AmosQL
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Transactions 



 
Stored function (relation) to store transactions:

create function transact(Integer tid)->Bag of Integer as stored;



 
Population of the transaction table:

add transact(1)=in({1,2,3}); 
remove transact(1)=2;



 
Selection of a transaction:

transact(1);



 
Transactions as a bag of tuples:

create function transact_bt()->Bag of <Integer tid, Integer item>
as select tid, item  

where transact(tid)=item;
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Support Counting 



 
Function to calculate the support counts of items in bt:

create function itemsupps(Bag of <Integer, Integer> bt)
->Bag of <Integer/*item*/,Integer/*supp*/>

as groupby ((select item,tid
from Integer item, Integer tid
where <tid,item> in bt), 

#'count'); 
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Item-Related Projection 

create function irpft(Bag of <Integer, Integer> bt, 
Integer minsupp, 
Integer pitem)
->Bag of <Integer, Integer>

/* Calculates the pitem-related frequent item projection
of the bag of transactions bt according to minsupp. */  

as select tid, item
from Integer tid, Integer item, Integer s
where <tid, item> in bt
and <item, s> in freq_items(bt, minsupp)
and tid in item_suppby(bt, pitem)
and item > pitem;
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Sample Association Rule DB
create function FIS(Vector)->Integer as stored;
add FIS({'beer'})=5; 
add FIS({'other'})=2; 
add FIS({'diapers'})=3; 
add FIS({'beer','diapers'})=2; 
add FIS({'beer','other'})=1;
add FIS({'beer','diapers','other'})=1;
add FIS({'diapers','other'})=1;

create function showFIS()->Bag of <Vector, Integer> 
as select fis, supp 

from Vector fis, Integer supp 
where FIS(fis)=supp;

create function vunion(Vector v1, Vector v2)->Vector
as sort(select distinct I from object i

where i in v1 or i in v2);

create function ARconf(vector prec, vector cons) -> real 
as FIS(vunion(prec,cons))/FIS(prec);

ARconf({'beer'},{'diapers'});
ARconf({‘diapers'},{'beer'});
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Subset Generation

create function bproject(Bag b, Object p)->Bag
/* Returns a bag of the elements of b that are grater than p. */
as (select o from object o

where o in b and o > p);

create function bsubset_tcf(Bag b, Vector rv)->Bag of <Bag, Vector>
/* Generates all the children of a node in the subset-tree. */ 
as select pb, concat(rv, {p})

from Object p, Bag pb
where p in b

and pb = materialize(bproject(b,p));

create function bsubset_traverse(Bag b)->Bag of <Vector, Vector>
/* Generates all the subsets of the elements of bag b

by traversing the subset-tree defined by bsubset_tcf().*/  
as select vectorof(pb), rv

from Bag pb, Vector rv
where <pb, rv> in traverse(#’bsubset_tcf’, b, {}); 



The Assignment
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The Assignment



 
Implement database projection based frequent itemset

 
and 

association rule mining according to the provided skeleton 
(a3arm.osql) in Amos II. 



 
The program must run in a few minutes since we are going 
to run it during the examination. Too slow programs will be 
rejected.



 
The algorithm is easy to get wrong and then you will get a 
super-exponential behavior that causes the execution time 
to blow up!



 
There will be example runs on the lab course's home 
page. Your solution must be able to get these results 
before the examination. 
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Exercise 



 
Find the rules with support 0.5 and confidence 0.75 in the 
following database:

TID Transaction
1 {a b c d}
2 {a c d}
3 {a b c}
4 {b c d}
5 {a b c}
6 {a b c}
7 {c d e}
8 {a c}
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