Errata for the book: Introduction to Data Mining, by Tan, Steinbach and Kumar, Pearson, 2006.

2009-09-30

Errors found beyond the official errata list:

1. Page 218, 2nd paragraph from bottom:

Reads: The FOIL's information gain for rules r_1 and r_2 given in the preceding example are 43.12 and 2, respectively.

Should read: The FOIL's information gain for rules r_1 and r_2 given in the preceding example are 63.87 and 2.83, respectively.

2. Page 221, Figure 5.5:

Reads: r3:
$$(P=Yes,Q=No) ==> +$$

Should read: r3:
$$(P=Yes,R=No) ==> +$$

Comment: The third rule in the right-hand side of Figure 5.5 corresponds to following the P_{right} and R_{left} branch (i.e. $P \to R \to +$) of the tree in the figure.

3. Page 332, last paragraph:

Reads: Such an approach can be very expensive because it requires O(Nmw) comparisons, where N is the number of transactions, $M = 2^k - 1$ is the number of candidate itemsets, and w is the maximum transaction width.

Should read: Such an approach can be very expensive because it requires $O(Nm\frac{w^2}{2})$ comparisons, where N is the number of transactions, $M=2^k-1$ is the number of candidate itemsets, and w is the maximum transaction width.

Comment: The worst case scenario should at least include w*w/2, taking that w is the maximum width of transactions and w/2 is the average width of the candidates as well. One could probably restrict this further to w/2*w/2 since we would find matching items in w/2 comparisons on average.

4. Page 432, after 1st paragraph:

Reads:
$$\begin{aligned} &\text{1-sequences:} &< i_1>, < i_2>, \cdots, < i_n> \\ &\text{2-sequences:} &< \{i_1,i_2\}>, < \{i_1,i_3\}>, \cdots, < \{i_{n-1},i_n\}> \\ &< \{i_1\}, \{i_1\}>, < \{i_1\}, \{i_2\}>, \cdots, < \{i_{n-1}\}, \{i_n\}> \end{aligned}$$

$$&\text{3-sequences:} &< \{i_1,i_2,i_3\}>, < \{i_1,i_2,i_4\}>, \cdots, < \{i_1,i_2\}\{i_1\}>, \cdots, \\ &< \{i_1\}, \{i_1,i_2\}>, \cdots, < \{i_1\}\{i_1\}\{i_1\}>, \cdots, < \{i_n\}\{i_n\}\{i_n\}> \end{aligned}$$
 Should read:
$$\begin{aligned} &\text{1-sequences:} &< i_1>, < i_2>, \cdots, < i_n> \\ &2\text{-sequences:} &< \{i_1,i_2\}>, < \{i_1,i_3\}>, \cdots, < \{i_1,i_n\}>, \\ &< \{i_2,i_3\}>, < \{i_2,i_4\}>, \cdots, < \{i_2,i_n\}>, \\ &< \cdots>, < \cdots>, < \cdots> \cdots> \cdots \end{aligned}$$

$$<\{i_{1}, i_{2}\} >, <\{i_{1}, i_{3}\} >, \cdots, <\{i_{1}, i_{n}\} >, \\ <\{i_{2}, i_{3}\} >, <\{i_{2}, i_{4}\} >, \cdots, <\{i_{2}, i_{n}\} >, \\ <\cdots >, <\cdots >, \cdots >, \\ <\{i_{n-1}, i_{n}\} >$$

$$<\{i_{1}\}, \{i_{1}\} >, <\{i_{1}\}, \{i_{2}\} >, \cdots, <\{i_{1}\}, \{i_{n}\} >, \\ <\{i_{2}\}, \{i_{1}\} >, <\{i_{2}\}, \{i_{2}\} >, \cdots, <\{i_{2}\}, \{i_{n}\} >, \\ <\cdots >, <\cdots >, \cdots >, \cdots >, \\ <\{i_{n}\}, \{i_{1}\} >, <\{i_{n}\}, \{i_{2}\} >, \cdots, <\{i_{n}\}, \{i_{n}\} >, \\ <\cdots >, <\{i_{n}\}, \{i_{1}\} >, <\{i_{n}\}, \{i_{2}\} >, \cdots , <\{i_{n}\}, \{i_{n}\} >, \\ <\{i_{n}\}, \{i_{n}\} >, <\{i_{n}\}, \{i_{n}\} >, \cdots , <\{i_{n}\}, \{i_{n}\} >, \\ <\{i_{n}\}, \{i_{n}\} >, <\{i_{n}\}, \{i_{n}\} >, \cdots , <\{i_{n}\}, \{i_{n}\} >, \\ <\{i_{n}\}, \{i_{n}\} >, \cdots , <\{i_{n}\}, \{i_{n}\} >, \cdots , <\{i_{n}\}, \{i_{n}\} >, \\ <\{i_{n}\}, \{i_{n}\}, \{i_{n}\}, \{i_{n}\} >, \cdots , <\{i_{n}\}, \{i_{n}\}, \{i_{n}\} >, \\ <\{i_{n}\}, \{i_{n}\}, \{i_{n}\},$$

 $<\{i_n\},\{i_{n-1},i_n\}>,\cdots,$

$$< \{i_1,i_2\}, \{i_1\} >, < \{i_1,i_3\}, \{i_1\} >, \cdots, < \{i_1,i_n\}, \{i_1\} >, \cdots, < \{i_2,i_3\}, \{i_1\} >, < \{i_2,i_4\}, \{i_1\} >, \cdots, < \{i_2,i_n\}, \{i_1\} >, \cdots, < \{i_{n-1},i_n\}, \{i_1\} >, \cdots, < \{i_{n-1},i_n\}, \{i_1\} >, \cdots, < \{i_{n-1},i_n\}, \{i_2\} >, < \{i_1,i_3\}, \{i_2\} >, \cdots, < \{i_1,i_n\}, \{i_2\} >, \cdots, < \{i_2,i_3\}, \{i_2\} >, < \{i_2,i_4\}, \{i_2\} >, \cdots, < \{i_2,i_n\}, \{i_2\} >, \cdots, < \{i_{n-1},i_n\}, \{i_2\} >, \cdots, < \{i_{n-1},i_n\}, \{i_n\} >, < \{i_1,i_3\}, \{i_n\} >, \cdots, < \{i_1,i_n\}, \{i_n\} >, \cdots, < \{i_2,i_3\}, \{i_n\} >, < \{i_2,i_4\}, \{i_n\} >, \cdots, < \{i_2,i_n\}, \{i_n\} >, \cdots, < \{i_{n-1},i_n\}, \{i_n\} >, \cdots, < \{i_1,i_2,i_3\} >, < \{i_1,i_2,i_4\} >, \cdots, < \{i_1,i_2,i_n\} >, \cdots, < \{i_{n-2},i_{n-1},i_n\} >$$

5. Page 432, 3rd paragraph (item 1):

Reads: On the other hand, there are many candidate 2-sequences, such as $<\{i_1,i_2\}>,<\{i_1\},\{i_2\}>,<\{i_2\},\{i_1\}>$ and $<\{i_1,i_1\}>$, that can be generated.

Should read: On the other hand, there are many candidate 2-sequences, such as $<\{i_1,i_2\}>,<\{i_1\},\{i_2\}>,<\{i_2\},\{i_1\}>,<\{i_1\},\{i_1\}>$ and $<\{i_2\},\{i_2\}>$, that can be generated.