Review of Parsing

- Given a language $L(G)$, a parser consumes a sequence of tokens s and produces a parse tree.
- Issues:
 - How do we recognize that $s \in L(G)$?
 - A parse tree of s describes how $s \in L(G)$.
 - Ambiguity: more than one parse tree (possible interpretation) for some string s.
 - Error: no parse tree for some string s.
 - How do we construct the parse tree?

Abstract Syntax Trees

- So far, a parser traces the derivation of a sequence of tokens.
- The rest of the compiler needs a structural representation of the program.
- **Abstract syntax trees**
 - Like parse trees but ignore some details.
 - Abbreviated as AST.

Abstract Syntax Trees (Cont.)

- Consider the grammar:

 $$ E \rightarrow \text{int} | (E) | E + E $$

- And the string:

 $$ 5 + (2 + 3) $$

- After lexical analysis (a list of tokens):

 \[
 \text{int}_5 \ ' + ' \ (' \ \text{int}_2 \ ' + ' \ \text{int}_3 \ ')'
 \]

- During parsing we build a parse tree...
Example of Parse Tree

• Traces the operation of the parser
• Captures the nesting structure
• But too much information
 - Parentheses
 - Single-successor nodes

Example of Abstract Syntax Tree

• Also captures the nesting structure
• But abstracts from the concrete syntax
 ⏫ more compact and easier to use
• An important data structure in a compiler

Semantic Actions

• This is what we will use to construct ASTs

• Each grammar symbol may have attributes
 - An attribute is a property of a programming language construct
 - For terminal symbols (lexical tokens) attributes can be calculated by the lexer

• Each production may have an action
 - Written as: \(X \rightarrow Y_1 \ldots Y_n \{ \text{action} \} \)
 - That can refer to or compute symbol attributes

Semantic Actions: An Example

• Consider the grammar
 \[E \rightarrow \text{int} \mid E + E \mid (E) \]

• For each symbol \(X \) define an attribute \(X.\text{val} \)
 - For terminals, \text{val} is the associated lexeme
 - For non-terminals, \text{val} is the expression’s value (which is computed from values of subexpressions)

• We annotate the grammar with actions:

 \[
 \begin{align*}
 E & \rightarrow \text{int} \{ E.\text{val} = \text{int.\text{val}} \} \\
 & \mid E_1 + E_2 \{ E.\text{val} = E_1.\text{val} + E_2.\text{val} \} \\
 & \mid (E_1) \{ E.\text{val} = E_1.\text{val} \}
 \end{align*}
 \]
Semantic Actions: An Example (Cont.)

- String: \(5 + (2 + 3) \)
- Tokens: `int5 ' + ' (' int2 ' + ' int3 ')`

Productions

- \(E \rightarrow E_1 + E_2 \)
- \(E_1 \rightarrow \text{int}_5 \)
- \(E_2 \rightarrow (E_3) \)
- \(E_3 \rightarrow E_4 + E_5 \)
- \(E_4 \rightarrow \text{int}_2 \)
- \(E_5 \rightarrow \text{int}_3 \)

Equations

- \(E.\text{val} = E_1.\text{val} + E_2.\text{val} \)
- \(E_1.\text{val} = \text{int}_5.\text{val} = 5 \)
- \(E_2.\text{val} = E_3.\text{val} \)
- \(E_3.\text{val} = E_4.\text{val} + E_5.\text{val} \)
- \(E_4.\text{val} = \text{int}_2.\text{val} = 2 \)
- \(E_5.\text{val} = \text{int}_3.\text{val} = 3 \)

Semantic Actions: Dependencies

Semantic actions specify a system of equations
- Order of executing the actions is not specified

- Example:
 - \(E_3.\text{val} = E_4.\text{val} + E_5.\text{val} \)
 - Must compute \(E_4.\text{val} \) and \(E_5.\text{val} \) before \(E_3.\text{val} \)
 - We say that \(E_3.\text{val} \) depends on \(E_4.\text{val} \) and \(E_5.\text{val} \)

- The parser must find the order of evaluation

Dependency Graph

- Each node labeled with a non-terminal \(E \) has one slot for its \text{val} attribute
- Note the dependencies

Evaluating Attributes

- An attribute must be computed after all its successors in the dependency graph have been computed
 - In the previous example attributes can be computed bottom-up

- Such an order exists when there are no cycles
 - Cyclically defined attributes are not legal
Semantic Actions: Notes (Cont.)

- **Synthesized attributes**
 - Calculated from attributes of descendents in the parse tree
 - E.val is a synthesized attribute
 - Can always be calculated in a bottom-up order

- Grammars with only synthesized attributes are called *S-attributed grammars*
 - Most frequent kinds of grammars

Inherited Attributes

- Another kind of attributes
- Calculated from attributes of the parent node(s) and/or siblings in the parse tree

- Example: a line calculator

A Line Calculator

- Each line contains an expression
 \[E \rightarrow \text{int} \mid E + E \]
- Each line is terminated with the = sign
 \[L \rightarrow E = \mid + E = \]
- In the second form, the value of evaluation of the previous line is used as starting value
- A program is a sequence of lines
 \[P \rightarrow \varepsilon \mid P L \]

Attributes for the Line Calculator

- Each E has a synthesized attribute val
 - Calculated as before
- Each L has a synthesized attribute val
 \[L \rightarrow E = \{ L.val = E.val \} \]
 \[\mid + E = \{ L.val = E.val + L.prev \} \]
- We need the value of the previous line
- We use an inherited attribute L.prev
Attributes for the Line Calculator (Cont.)

• Each P has a synthesized attribute val
 - The value of its last line
 \[P \rightarrow \varepsilon \quad \{ P.val = 0 \} \]
 \[| P_1 L \quad \{ P.val = L.val; \]
 \[\quad L.prev = P_1.val \} \]

• Each L has an inherited attribute prev
 - \(L.prev \) is inherited from sibling \(P_1 \).val

• Example ...

Example of Inherited Attributes

\[\begin{array}{c}
 P \quad \varepsilon \\
 \quad \quad L \\
 \quad \quad + \\
 \quad \quad E_1 \\
 \quad \quad + \\
 \quad \quad = \\
 \quad E_2 \\
 \quad + \\
 \quad E_3 \\
 \quad int_2 \quad 2 \\
 \quad int_3 \quad 3
\end{array} \]

Semantic Actions: Notes (Cont.)

• Semantic actions can be used to build ASTs

• And many other things as well
 - Also used for type checking, code generation, ...

• Process is called syntax-directed translation
 - Substantial generalization over CFGs

Constructing an AST

• We first define the AST data type
 - Consider an abstract tree type with two constructors:

\[\text{mkleaf}(n) = \begin{array}{c} n \\
\text{mkplus}(T_1, T_2) = \begin{array}{c} \text{PLUS} \end{array}
\end{array} \]
Constructing a Parse Tree

- We define a synthesized attribute `ast`
 - Values of `ast` values are ASTs
 - We assume that `int.lexval` is the value of the integer lexeme
 - Computed using semantic actions

```
E → int { E.ast = mkleaf(int.lexval) }
| E1 + E2 { E.ast = mkplus(E1.ast, E2.ast) }
| ( E1 )  { E.ast = E1.ast }
```

Parse Tree Example

- Consider the string `int5 + (' int2 + ' int3 ')`
- A bottom-up evaluation of the `ast` attribute:
  ```
  E.ast = mkplus(mkleaf(5), mkplus(mkleaf(2), mkleaf(3)))
  ```

Review of Abstract Syntax Trees

- We can specify language syntax using CFG.
- The parser answers whether \(s \in L(G) \)
- ... and builds a parse tree
- ... which it converts to an AST
- ... and passes on to the rest of the compiler.

- In the next “parsing” lectures:
 - How do we answer \(s \in L(G) \) and build a parse tree?
 - After that: from AST to assembly language.

Second-Half of Lecture: Outline

- Implementation of parsers
- Two approaches
 - Top-down
 - Bottom-up
- These slides: Top-Down
 - Easier to understand and program manually
- Then: Bottom-Up
 - More powerful and used by most parser generators
Introduction to Top-Down Parsing

- Terminals are seen in order of appearance in the token stream:
 \[t_2 \ t_5 \ t_6 \ t_8 \ t_9 \]
- The parse tree is constructed
 - From the top
 - From left to right

Recursive Descent Parsing: Example

- Consider the grammar
 \[E \rightarrow T \ast E \mid T \]
 \[T \rightarrow (E) \mid \text{int} \mid \text{int} \ast T \]
- Token stream is: \(\text{int}_5 \ast \text{int}_2 \)
- Start with top-level non-terminal \(E \)
- Try the rules for \(E \) in order

Recursive Descent Parsing: Example (Cont.)

- Try \(E \rightarrow T_1 + E_2 \)
- Then try a rule for \(T_1 \rightarrow (E_3) \)
 - But \((\) does not match input token \(\text{int}_5 \); we backtrack.
- Try \(T_1 \rightarrow \text{int} \). Token matches.
 - But \(+ \) after \(T_1 \) does not match input token \(\ast \)
- Try \(T_1 \rightarrow \text{int} \ast T_2 \)
 - This will match and will consume the two tokens.
 - Try \(T_2 \rightarrow \text{int} \) (matches) but \(+ \) after \(T_1 \) will be unmatched.
 - Try \(T_2 \rightarrow \text{int} \ast T_3 \) but \(\ast \) does not match with end-of-input.
- We have exhausted all the choices for \(T_1 \)
 - Backtrack to choice for \(E \)

Recursive Descent Parsing: Example (Cont.)

- Try \(E \rightarrow T_1 \)
- Follow same steps as before for \(T_1 \)
 - And succeed with \(T_1 \rightarrow \text{int}_5 \ast \text{int}_2 \) and \(T_2 \rightarrow \text{int}_2 \)
 - With the following parse tree
Recursive Descent Parsing: Notes

- Easy to implement by hand
- Somewhat inefficient (due to backtracking)
- But does not always work ...

When Recursive Descent Does Not Work

- Consider a production $S \rightarrow S a$
  ```cpp
  bool S1() { return S() && term(a); }
  bool S() { return S1(); }
  ```
- $S()$ will get into an infinite loop

- A left-recursive grammar has a non-terminal S
 $S \rightarrow^* S\alpha$ for some α
- Recursive descent does not work in such cases
 - It goes into an infinite loop

Elimination of Left Recursion

- Consider the left-recursive grammar:
 $S \rightarrow S \alpha \mid \beta$
- Generates all strings starting with a β and followed by any number of α’s.
- The grammar can be rewritten using right recursion:

 $S \rightarrow \beta S'$

 $S' \rightarrow \alpha S' \mid \varepsilon$

More Elimination of Left-Recursion

- In general
 $S \rightarrow S \alpha_1 \mid \ldots \mid S \alpha_n \mid \beta_1 \mid \ldots \mid \beta_m$
- All strings derived from S start with one of β_1, \ldots, β_m and continue with several instances of $\alpha_1, \ldots, \alpha_n$
- Rewrite as

 $S \rightarrow \beta_1 S' \mid \ldots \mid \beta_m S'$

 $S' \rightarrow \alpha_1 S' \mid \ldots \mid \alpha_n S' \mid \varepsilon$
General Left Recursion

• The grammar

 \[S \rightarrow A\alpha \mid \delta \]

 \[A \rightarrow S\beta \]

 is also left-recursive because

 \[S \rightarrow^* S\beta\alpha \]

• This left-recursion can also be eliminated

[See a Compilers book for a general algorithm]

Summary of Recursive Descent

• Simple and general parsing strategy.
 - Left-recursion must be eliminated first
 - ... but that can be done automatically.

• Unpopular because of backtracking.
 - Thought to be too inefficient.

• In practice, backtracking is eliminated by restricting the grammar.

Predictive Parsers

• Like recursive-descent but parser can “predict” which production to use
 - By looking at the next few tokens
 - No backtracking

• Predictive parsers accept LL(k) grammars
 - L means “left-to-right” scan of input
 - L means “leftmost derivation”
 - k means “predict based on k tokens of lookahead”

• In practice, LL(1) is used

LL(1) Languages

• In recursive-descent, for each non-terminal and input token there may be a choice of productions

• LL(1) means that for each non-terminal and token there is only one production that could lead to success

• Can be specified via 2D tables
 - One dimension for current non-terminal to expand
 - One dimension for next token
 - A table entry contains one production
Predictive Parsing and Left Factoring

- Recall the grammar for arithmetic expressions
 \[E \rightarrow T + E \mid T \]
 \[T \rightarrow (E) \mid \text{int} \mid \text{int} \ast T \]

- Hard to predict because
 - For \(T \) two productions start with \text{int}
 - For \(E \) it is not clear how to predict

- A grammar must be left-factored before it is used for predictive parsing

Left-Factoring Example

- Recall the grammar
 \[E \rightarrow T + E \mid T \]
 \[T \rightarrow (E) \mid \text{int} \mid \text{int} \ast T \]

- Factor out common prefixes of productions:
 \[E \rightarrow T \ X \]
 \[X \rightarrow +E \mid \varepsilon \]
 \[T \rightarrow (E) \mid \text{int} \ Y \]
 \[Y \rightarrow *T \mid \varepsilon \]

- This grammar is equivalent to the original one.

LL(1) Parsing Table Example

- Left-factored grammar
 \[E \rightarrow T \ X \]
 \[X \rightarrow +E \mid \varepsilon \]
 \[T \rightarrow (E) \mid \text{int} \ Y \]
 \[Y \rightarrow *T \mid \varepsilon \]

- The LL(1) parsing table ($ is the end marker):

<table>
<thead>
<tr>
<th></th>
<th>int</th>
<th>*</th>
<th>+</th>
<th>(</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>TX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>+E</td>
<td></td>
<td></td>
<td>$</td>
</tr>
<tr>
<td>T</td>
<td>int</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>*T</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LL(1) Parsing Table Example (Cont.)

- Consider the \([E, \text{int}]\) entry
 - “When current non-terminal is \(E \) and next input is \text{int}, use production \(E \rightarrow T \ X \) ”
 - This production can generate an \text{int} in the first place

- Consider the \([Y,+]\) entry
 - “When current non-terminal is \(Y \) and current token is +, get rid of \(Y \)”
 - \(Y \) can be followed by + only in a derivation in which \(Y \rightarrow \varepsilon \)
LL(1) Parsing Tables: Errors

- Blank entries indicate error situations
 - Consider the \([E,\ast]\) entry
 - "There is no way to derive a string starting with \(\ast\) from non-terminal \(E\)"

Using Parsing Tables

- Method similar to recursive descent, except
 - For each non-terminal \(X\)
 - We look at the next token \(a\)
 - And choose the production shown at \([X,a]\)
- We use a stack to keep track of pending non-terminals.
- We reject when we encounter an error state.
- We accept when we encounter end-of-input.

LL(1) Parsing Algorithm

\[
\text{initialize stack} \leftarrow <S \$> \text{ and next}
\]

Repeat:

- case stack of
 - \(<X, \text{rest}> : \text{if } T[X,\ast\text{next}] = Y_1 \ldots Y_n\)
 - then stack \leftarrow <Y_1 \ldots Y_n \text{ rest}>;
 - else error();
 - \(<t, \text{rest}> : \text{if } t = \ast\text{next}++\)
 - then stack \leftarrow <\text{rest}>;
 - else error();
- until stack == <>

LL(1) Parsing Example

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E $)</td>
<td>int * int $</td>
<td>(T X)</td>
</tr>
<tr>
<td>(T \ X $)</td>
<td>int * int $</td>
<td>int (Y)</td>
</tr>
<tr>
<td>int (Y \ X $)</td>
<td>int * int $</td>
<td>terminal</td>
</tr>
<tr>
<td>(Y \ X $)</td>
<td>* int $</td>
<td>* (T)</td>
</tr>
<tr>
<td>* (T \ X $)</td>
<td>* int $</td>
<td>terminal</td>
</tr>
<tr>
<td>(T \ X $)</td>
<td>int $</td>
<td>int (Y)</td>
</tr>
<tr>
<td>int (Y \ X $)</td>
<td>int $</td>
<td>terminal</td>
</tr>
<tr>
<td>(Y \ X $)</td>
<td>$</td>
<td>(\varepsilon)</td>
</tr>
<tr>
<td>(X $)</td>
<td>$</td>
<td>(\varepsilon)</td>
</tr>
<tr>
<td>($$)</td>
<td>Accept</td>
<td></td>
</tr>
</tbody>
</table>
Constructing Parsing Tables

- LL(1) languages are those defined by a parsing table for the LL(1) algorithm where no table entry is multiply defined.

- Once we have the table:
 - The parsing is simple and fast.
 - No backtracking is necessary.

- We want to generate parsing tables from CFG.

Constructing Parsing Tables (Cont.)

If \(A \rightarrow \alpha \), where in the line of \(A \) do we place \(\alpha \)?

- In the column of \(t \) where \(t \) can start a string derived from \(\alpha \)
 - \(\alpha \rightarrow^* t \beta \)
 - We say that \(t \in \text{First}(\alpha) \)

- In the column of \(t \) if \(\alpha \) is \(\varepsilon \) and \(t \) can follow an \(A \)
 - \(S \rightarrow^* \beta A \delta \)
 - We say \(t \in \text{Follow}(A) \)

Computing First Sets

Definition

\[
\text{First}(X) = \{ t \mid X \rightarrow^* t \alpha \} \cup \{ \varepsilon \mid X \rightarrow^* \varepsilon \}
\]

Algorithm sketch

1. \(\text{First}(t) = \{ t \} \)
2. \(\varepsilon \in \text{First}(X) \) if \(X \rightarrow \varepsilon \) is a production
3. \(\varepsilon \in \text{First}(X) \) if \(X \rightarrow A_1 \ldots A_n \)
 and \(\varepsilon \in \text{First}(A_i) \) for each \(1 \leq i \leq n \)
4. \(\text{First}(\alpha) \subseteq \text{First}(X) \) if \(X \rightarrow A_1 \ldots A_n \alpha \)
 and \(\varepsilon \in \text{First}(A_i) \) for each \(1 \leq i \leq n \)
5. Add \(\{ \varepsilon \} \) to \(\text{First}(X) \).

More constructive algorithm

1. \(\text{First}(t) = \{ t \} \)
2. For all productions \(X \rightarrow A_1 \ldots A_n \)
 - Add \(\text{First}(A_i) \setminus \{ \varepsilon \} \) to \(\text{First}(X) \). Stop if \(\varepsilon \notin \text{First}(A_i) \).
 - Add \(\text{First}(A_2) \setminus \{ \varepsilon \} \) to \(\text{First}(X) \). Stop if \(\varepsilon \notin \text{First}(A_2) \).
 - ...
 - Add \(\text{First}(A_n) \setminus \{ \varepsilon \} \) to \(\text{First}(X) \). Stop if \(\varepsilon \notin \text{First}(A_n) \).
 - Add \(\{ \varepsilon \} \) to \(\text{First}(X) \).
First Sets: Example

• Recall the grammar
 \[E \rightarrow T \ X \quad X \rightarrow + \ E \mid \varepsilon \]
 \[T \rightarrow (\ E) \mid \text{int} \ Y \quad Y \rightarrow * \ T \mid \varepsilon \]

• First sets
 \[\text{First}(()) = \{ () \} \quad \text{First}(\ T) = \{ \text{int}, () \} \]
 \[\text{First}(()) = \{ () \} \quad \text{First}(\ E) = \{ \text{int}, () \} \]
 \[\text{First}(\text{int}) = \{ \text{int} \} \quad \text{First}(\ X) = \{ +, \varepsilon \} \]
 \[\text{First}(+) = \{ + \} \quad \text{First}(\ Y) = \{ *, \varepsilon \} \]
 \[\text{First}(*) = \{ * \} \]

Computing Follow Sets

Definition
 \[\text{Follow}(X) = \{ t \mid S \rightarrow^* \beta \ X \ \delta \} \]

Intuition
- If \(X \rightarrow A \ B \) then \(\text{First}(B) \subseteq \text{Follow}(A) \)
 and \(\text{Follow}(X) \subseteq \text{Follow}(B) \)
- Also if \(B \rightarrow^* \varepsilon \) then \(\text{Follow}(X) \subseteq \text{Follow}(A) \)
- If \(S \) is the start symbol then \$ \in \text{Follow}(S) \)

Computing Follow Sets (Cont.)

Algorithm sketch
1. \$ \in \text{Follow}(S)
2. \text{First}(\beta) - \{\varepsilon\} \subseteq \text{Follow}(X)
 For each production \(A \rightarrow \alpha X \beta \)
3. \text{Follow}(A) \subseteq \text{Follow}(X)
 For each production \(A \rightarrow \alpha X \beta \) where \(\varepsilon \in \text{First}(\beta) \)

Computing Follow Sets (Cont.)

Definition
 \[\text{Follow}(X) = \{ t \mid S \rightarrow^* \beta \ X \ \delta \} \]

More constructive algorithm
1. First compute the \text{First} sets for all non-terminals
2. If \(S \) is the start symbol, add \$ to \text{Follow}(S)
3. For all productions \(Y \rightarrow \ldots X A_1 \ldots A_n \)
 • Add \text{First}(A_1) - \{\varepsilon\} to \text{Follow}(X). Stop if \(\varepsilon \notin \text{First}(A_1) \).
 • Add \text{First}(A_2) - \{\varepsilon\} to \text{Follow}(X). Stop if \(\varepsilon \notin \text{First}(A_2) \).
 • \ldots
 • Add \text{First}(A_n) - \{\varepsilon\} to \text{Follow}(X). Stop if \(\varepsilon \notin \text{First}(A_n) \).
 • Add \text{Follow}(Y) to \text{Follow}(X).
Follow Sets: Example

Recall the grammar

\[
E \rightarrow T X \\
X \rightarrow + E | \epsilon \\
T \rightarrow (E) | \text{int} \ Y \\
Y \rightarrow * T | \epsilon
\]

Follow sets

\[
\begin{align*}
\text{Follow}(+) &= \{ \text{int}, (\} \\
\text{Follow}(*&) &= \{ \text{int}, (\} \\
\text{Follow}(\)) &= \{ \text{int}, (\} \\
\text{Follow}(E) &= \{), $ \} \\
\text{Follow}(X) &= \{ $,) \} \\
\text{Follow}(T) &= \{ +,), $ \} \\
\text{Follow}(Y) &= \{ +,), $ \} \\
\text{Follow}(\text{int}) &= \{ *, +,), $ \}
\end{align*}
\]

Constructing LL(1) Parsing Tables

• Construct a parsing table \(T \) for CFG \(G \)

• For each production \(A \rightarrow \alpha \) in \(G \) do:
 - For each terminal \(t \in \text{First}(\alpha) \) do
 \(T[A, t] = \alpha \)
 - If \(\epsilon \in \text{First}(\alpha) \) and \(t \) is an end-of-input symbol, then:
 \(T[A, t] = \alpha \)

Notes on LL(1) Parsing Tables

• If any entry is multiply defined then \(G \) is not LL(1). This happens:
 - if \(G \) is ambiguous;
 - if \(G \) is left recursive;
 - if \(G \) is not left-factored;
 - and in other cases as well.

• Most programming language grammars are not LL(1).
• There are tools that build LL(1) tables.

Review

• For some grammars there is a simple parsing strategy:

 Predictive parsing (LL(1))

• Next time: a more powerful parsing strategy.