Bottom-up Parsing (Review)

• A bottom-up parser rewrites the input string to the start symbol.
• The state of the parser is described as:
 \[\alpha \mid \gamma \]
 - \(\alpha\) is a stack of terminals and non-terminals;
 - \(\gamma\) is the string of terminals not yet examined.
• Initially: \(I x_1 x_2 \ldots x_n\)

The Shift and Reduce Actions (Review)

Recall the CFG:
\[
E \rightarrow E + (E) \mid \text{int}
\]

A bottom-up parser uses two kinds of actions:

• **Shift** pushes a terminal from input on the stack
 \[E + \text{(int)} \Rightarrow E + \text{(int)} \]

• **Reduce** pops 0 or more symbols off of the stack (production RHS) and pushes a non-terminal on the stack (production LHS)
 \[E + \text{(E + (E))} \Rightarrow E + \text{(E) } \]
Key Issue: When to Shift or Reduce?

- Idea: use a deterministic finite automaton (DFA) to decide when to shift or reduce
 - The input is the stack
 - The language consists of terminals and non-terminals

We run the DFA on the stack and we examine the resulting state \(X \) and the token \(tok \) after \(I \)
- If \(X \) has a transition labeled \(tok \) then shift
- If \(X \) is labeled with “\(A \rightarrow \beta \) on \(tok \)” then reduce

Representing the DFA

- Parsers represent the DFA as a 2D table.
 (Recall table-driven lexical analysis.)
- Lines correspond to DFA states.
- Columns correspond to terminals and non-terminals.
- Typically columns are split into:
 - Those for terminals: the action table.
 - Those for non-terminals: the goto table.

LR(1) Parsing: An Example

The table for a fragment of our DFA:

<table>
<thead>
<tr>
<th>()</th>
<th>int</th>
<th>+</th>
<th>()</th>
<th>$</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>()</th>
<th>int</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>s4</td>
<td>96</td>
</tr>
<tr>
<td>4</td>
<td>s5</td>
<td>86</td>
</tr>
<tr>
<td>5</td>
<td>(r_{E \rightarrow \text{int}})</td>
<td>(r_{E \rightarrow \text{int}})</td>
</tr>
<tr>
<td>6</td>
<td>s8</td>
<td>s7</td>
</tr>
<tr>
<td>7</td>
<td>(r_{E \rightarrow E+(E)})</td>
<td>(r_{E \rightarrow E+(E)})</td>
</tr>
</tbody>
</table>

\(sk \) is shift and goto state \(k \)
\(r_{\alpha \rightarrow \beta} \) is reduce
\(gk \) is goto state \(k \)
The LR Parsing Algorithm
• After a shift or reduce action we rerun the DFA on the entire stack
 – This is wasteful, since most of the work is repeated
• To avoid this, we remember for each stack element on which state it brings the DFA.
 • LR parser maintains a stack
 \[\langle \text{sym}_1, \text{state}_1 \rangle \ldots \langle \text{sym}_n, \text{state}_n \rangle \]
 \text{state}_k \text{ is the final state of the DFA on sym}_1 \ldots \text{sym}_k

Key Issue: How is the DFA Constructed?
• The stack describes the context of the parse:
 – What non-terminal we are looking for.
 – What production RHS we are looking for.
 – What we have seen so far from the RHS.
• Each DFA state describes several such contexts.
 E.g., when we are looking for non-terminal E, we might be looking either for an \text{int} or an \text{E + (E)} RHS.

LR(0) Items
• An LR(0) item is a production with a “I” somewhere on the RHS.
• The LR(0) items for \text{T} \rightarrow (E) are
 \text{T} \rightarrow \text{I} (E)
 \text{T} \rightarrow (\text{I} \text{E})
 \text{T} \rightarrow (E \text{I})
 \text{T} \rightarrow (E) \text{I}
• The only LR(0) item for \text{X} \rightarrow \varepsilon \text{ is } \text{X} \rightarrow \text{I}
LR(0) Items: Intuition

- An item \([X \rightarrow \alpha \mid \beta]\) says that the parser:
 - is looking for an \(X\)
 - has an \(\alpha\) on top of the stack
 - expects to find a string derived from \(\beta\) next in the input.

Notes:
- \([X \rightarrow \alpha \mid \alpha \beta]\) means that \(\alpha\) should follow.
 - Then we can shift it and still have a viable prefix.
- \([X \rightarrow \alpha \mid \beta]\) means that we could reduce \(X\).
 - But this is not always a good idea!

LR(1) Items

- An LR(1) item is a pair: \(X \rightarrow \alpha \mid \beta, \ a\)
 - \(X \rightarrow \alpha \beta\) is a production.
 - \(a\) is a terminal (the lookahead terminal).
 - LR(1) means 1 lookahead terminal.
- \([X \rightarrow \alpha \mid \beta, \ a]\) describes a context of the parser.
 - We are trying to find an \(X\) followed by an \(a\).
 - We have (at least) \(\alpha\) already on top of the stack.
 - Thus we need to see next a prefix derived from \(\beta a\).

Note

- The symbol \(\mid\) was used before to separate the stack from the rest of input: \(\alpha \mid \gamma\), where \(\alpha\) is the stack and \(\gamma\) is the remaining string of terminals.
- In items, \(\mid\) is used to mark a prefix of a production RHS: \(X \rightarrow \alpha \mid \beta, \ a\)
 - Here \(\beta\) might contain non-terminals as well.
- In either case, the stack is on the left of \(\mid\)

Convention

- We add to our grammar a fresh new start symbol \(S\) and a production \(S \rightarrow E\)
 - Where \(E\) is the old start symbol.
- The initial parsing context contains:
 - \(S \rightarrow \mid E, \ \$\)
 - Trying to find an \(S\) as a string derived from \(E\$\)
 - The stack is empty.
LR(1) Items (Cont.)

• In context containing
 \[E \rightarrow E + I (E) , + \]
 - If (follows then we can perform a shift to context containing
 \[E \rightarrow E + (I E) , + \]
• In context containing
 \[E \rightarrow E + (E) I , + \]
 - We can perform a reduction with \[E \rightarrow E + (E) \]
 - But only if a + follows

The Closure Operation

• The operation of extending the context with items is called the closure operation.

\[
\text{Closure}(\text{Items}) =
\text{repeat}
\begin{align*}
\text{for each } [X \rightarrow \alpha I Y\beta, a] \text{ in Items} \\
\text{for each production } Y \rightarrow \gamma \\
\text{for each } b \text{ in First}(\beta a) \\
\text{add } [Y \rightarrow I \gamma, b] \text{ to Items}
\end{align*}
\text{until Items is unchanged}
\]

Constructing the Parsing DFA (1)

• Construct the start context:
 \[E \rightarrow E + (E) I \text{ int} \]
• We abbreviate as:
 \[E \rightarrow E + (E) | \text{ int} \]
• Consider the item
 \[E \rightarrow E + (I E) , + \]
• We expect a string derived from \(E) + \)
• Our example has two productions for \(E \)
 \[E \rightarrow \text{ int} \text{ and } E \rightarrow E + (E) \]
• We describe this by extending the context with two more items:
 \[E \rightarrow I \text{ int } ,) \]
 \[E \rightarrow I E + (E) ,) \]
Constructing the Parsing DFA (2)

- A DFA state is a closed set of LR(1) items.
- The start state contains $[S \rightarrow I E , \$]$.
- A state that contains $[X \rightarrow \alpha I \beta, b]$ is labeled with “reduce with $X \rightarrow \alpha$ on b”.
- And now the transitions ...

The DFA Transitions

- A state “State” that contains $[X \rightarrow \alpha I \beta, b]$ has a transition labeled y to a state that contains the items “$\text{Transition}(\text{State}, y)$”
 - y can be a terminal or a non-terminal

Transition(State, y)

- Items = \emptyset
- for each $[X \rightarrow \alpha I \beta, b]$ in State
- add $[X \rightarrow \alpha y I \beta, b]$ to Items
- return Closure(Items)

LR Parsing Tables: Notes

- Parsing tables (i.e., the DFA) can be constructed automatically for a CFG.
- But we still need to understand the construction to work with parser generators.
 - E.g., they report errors in terms of sets of items.
- What kind of errors can we expect?
Shift/Reduce Conflicts

- If a DFA state contains both
 \[X \rightarrow \alpha I a \beta, b\] and \[Y \rightarrow \gamma I, a\]

- Then on input “a” we could either
 - Shift into state \([X \rightarrow \alpha a I \beta, b], or\)
 - Reduce with \(Y \rightarrow \gamma\)

- This is called a shift-reduce conflict

More Shift/Reduce Conflicts

- Consider the ambiguous grammar:
 \[E \rightarrow E + E | E * E | \text{int}\]

- We will have the states containing:
 \[E \rightarrow E * I E, +\] \[E \rightarrow E * E I, +\]
 \[E \rightarrow I E + E, +\] \(\Rightarrow E\) \[E \rightarrow E I + E, +\]

- Again we have a shift/reduce on input +
 - We need to reduce (* binds more tightly than +)
 - Recall solution: declare the precedence of * and +

More Shift/Reduce Conflicts

- In yacc declare precedence and associativity:
 \%left + \%left *

- Precedence of a rule = that of its last terminal.
 See yacc manual for ways to override this default.

- Resolve shift/reduce conflict with a shift if:
 - no precedence declared for either rule or terminal;
 - input terminal has higher precedence than the rule;
 - the precedences are the same and right associative.
Using Precedence to Solve S/R Conflicts

- Back to our example:
 \[E \rightarrow E \ast I \ E, + \] \[E \rightarrow E \ast E \ I, + \] \[E \rightarrow I \ E + E, + \] \[E \rightarrow E \ I + E, + \] \[E \rightarrow \ast \ E \] …

- We will choose reduce because precedence of rule \(E \rightarrow E \ast E \) is higher than of terminal +.

Using Precedence to Solve S/R Conflicts

- Same grammar as before:
 \[E \rightarrow E + E \ | \ E \ast E \ | \ \text{int} \]

- We will also have the states:
 \[E \rightarrow E + I \ E, + \] \[E \rightarrow E + E \ I, + \] \[E \rightarrow I \ E + E, + \] \[E \rightarrow E \ I + E, + \] …

- Now we also have a shift/reduce on input +
 - We will choose reduce because \(E \rightarrow E + E \) and + have the same precedence and + is left-associative.

Using Precedence to Solve S/R Conflicts

- Back to our dangling else example:
 \[S \rightarrow \text{if } E \text{ then } S \ I, \ else \]
 \[S \rightarrow \text{if } E \text{ then } S \ I \ else \ S, \ x \]

- Can eliminate conflict by declaring else having higher precedence than then.
- But this starts to look like “hacking the tables”.
- Best to avoid overuse of precedence declarations or we will end with unexpected parse trees.

Precedence Declarations Revisited

- The term “precedence declaration” is misleading!

These declarations do not define precedence; instead, they define conflict resolutions. I.e., they instruct shift-reduce parsers to resolve conflicts in certain ways. These two are not quite the same!
Reduce/Reduce Conflicts

- If a DFA state contains both \([X \rightarrow \alpha I, a]\) and \([Y \rightarrow \beta I, a]\)
 - Then on input “a” we do not know which production to reduce.

- This is called a **reduce/reduce conflict**

Reduce/Reduce Conflicts

- Usually due to gross ambiguity in the grammar.
- Ex. A grammar for a sequence of identifiers:
 \[
 S \rightarrow \varepsilon \mid \text{id} \mid \text{id } S
 \]

- There are two parse trees for the string \text{id}
 \[
 S \rightarrow \text{id } S \rightarrow \text{id}
 \]

- How does this confuse the parser?

Using Parser Generators

- Parser generators automatically construct the parsing DFA given a CFG.
 - Use precedence declarations and default conventions to resolve conflicts.
 - The parser algorithm is the same for all grammars (and is provided as a library function).

- But most parser generators do not construct the DFA as described before.
 - Because the LR(1) parsing DFA has 1000s of states even for a simple language.
LR(1) Parsing Tables are Big

• But many states are similar, e.g.

\[E \rightarrow \text{int} \mathbf{1}, $/+ \quad E \rightarrow \text{int} \quad \text{and} \quad E \rightarrow \text{int} \mathbf{1},)/+ \]

E \rightarrow \text{int} \mathbf{1},)/+ \quad E \rightarrow \text{int} \]

• Idea: merge the DFA states whose items differ only in the lookahead tokens
 - We say that such states have the same core

• We obtain

\[E \rightarrow \text{int} \mathbf{1}, $/+)/ \quad E \rightarrow \text{int} \mathbf{1}, $/+)/ \]

The Core of a Set of LR Items

Definition: The core of a set of LR items is the set of first components
 - Without the lookahead terminals

• Example: the core of

\[\{[X \rightarrow \alpha \mathbf{1} \beta, b], [Y \rightarrow \gamma \mathbf{1} \delta, d]\} \]

is

\[\{X \rightarrow \alpha \mathbf{1} \beta, Y \rightarrow \gamma \mathbf{1} \delta\} \]

LALR States

• Consider for example the LR(1) states

\[\{[X \rightarrow \alpha \mathbf{1} \mathbf{a}, [Y \rightarrow \beta \mathbf{1} \mathbf{c}]\} \]
\[\{[X \rightarrow \alpha \mathbf{1} \mathbf{b}, [Y \rightarrow \beta \mathbf{1} \mathbf{d}]\} \]

• They have the same core and can be merged

• The merged state contains:

\[\{[X \rightarrow \alpha \mathbf{1} \mathbf{a/b}, [Y \rightarrow \beta \mathbf{1} \mathbf{c/d}]\} \]

• These are called LALR(1) states
 - Stands for LookAhead LR
 - Typically 10 times fewer LALR(1) states than LR(1)

A LALR(1) DFA

• Repeat until all states have distinct core
 - Choose two distinct states with same core
 - Merge the states by creating a new one with the union of all the items
 - Point edges from predecessors to new state
 - New state points to all the previous successors
Conversion LR(1) to LALR(1): Example.

The LALR Parser Can Have Conflicts

- Consider for example the LR(1) states:
 \(\{ [X \rightarrow \alpha 1, a], [Y \rightarrow \beta 1, b] \} \)
 \(\{ [X \rightarrow \alpha 1, b], [Y \rightarrow \beta 1, a] \} \)

- And the merged LALR(1) state:
 \(\{ [X \rightarrow \alpha 1, a/b], [Y \rightarrow \beta 1, a/b] \} \)

- Has a new reduce/reduce conflict!

- In practice, such cases are rare.

LALR vs. LR Parsing: Things to keep in mind

- LALR languages are not natural.
 - They are an "efficiency hack" on LR languages.

- Any reasonable programming language has a LALR(1) grammar.

- LALR(1) parsing has become a standard for programming languages and parser generators.

A Hierarchy of Grammar Classes

From Andrew Appel, "Modern Compiler Implementation in ML"